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Abstract
Computational game theory has led to significant breakthroughs in AI dating back to the start
of AI as a discipline. These include the strongest AI agents for both recreational and practical
applications. For example, it has been instrumental in enabling superhuman AI from recreational
games such as two-player zero-sum games chess, go, and heads-up poker to multiplayer games such
as six-player poker and Hanabi, and even in games involving human language such as Diplomacy.
It has also empowered a growing range of non-recreational applications, such as trading, machine
learning robustness and safety, negotiation, conflict resolution, mechanism (e.g., auction) design,
information design, security, political campaigning, and self-driving cars.

This thesis pushes the boundary on computational game theory, especially in imperfect-information
sequential (extensive-form) games, which are most prevalent in practical applications both in
zero-sum games and beyond. We will present new theoretical concepts and frameworks, state-
of-the-art and often provably optimal algorithms for computing and learning equilibria, and
new ways to apply such algorithms to real-world problems, including problems in economics
such as mechanism and information design.

The thesis contains four parts. Here, we highlight selected significant results from each part.

Part I: Adversarial Team Games. This part covers new solution concepts, algorithms, and
complexity results for adversarial team games, which are games in which two teams compete
against each other. We study two variants: one where each player’s team assignment is known,
and one where some players’ team assignments may be hidden (“hidden-role games”). In the
former case, we develop optimal parameterized algorithms where the parameter captures
the amount of asymmetric information among team members. In the latter case, we develop
the first solution concept suitable for hidden-role games and study its complexity. Under
reasonable assumptions, we show that hidden-role games can be solved efficiently, and use our
efficient algorithm to exactly solve variants of the popular game The Resistance: Avalon
with up to six players.

Part II: Generalized Mechanism Design. This part covers applications of game solving to
optimal generalized mechanism design. We develop a general framework that covers sequential
mechanism design, sequential information design, optimal correlated equilibria and
more for the first time, and reduces them to zero-sum games, thus enabling computation
using any technique for computing equilibria in zero-sum games, including (but not limited
to) deep reinforcement learning. For optimal correlation, we show that our framework is
intrinsically connected to adversarial team games (as in the previous section), and this connection
yields the fastest algorithms for computing optimal correlated equilibria.

Part III: Learning in Games. This part covers how agents can use learning algorithms to play
games. The performance of a learning algorithm can be measured by the agent’s regret. Different
notions of regret can be characterized by different sets of strategy transformation functions
(“deviations”)—larger sets result in tighter notions of regret. We develop the fastest learning
algorithms for minimizing regret against linear and low-degree deviations, which are the tightest
solution concepts known to be efficiently learnable in games, based on a game-theoretic
characterization of these deviation sets. We also show that a mediator with only the abilities
to observe actions and pay the players can be used to efficiently steer the players to any
desired equilibrium with necessary payments growing only sublinearly with the time horizon.

Part IV: Subgame Solving. This part covers new techniques for subgame solving in imperfect-
information games. Subgame solving means performing computation during a game to choose
an action, instead of playing from a precomputed strategy such as a policy network. It has
been key to all the aforementioned major AI breakthroughs. We develop new techniques that
work even when the common-knowledge set is too large to work with (which previous
techniques cannot do), and use these techniques to build the first strong bot—and, to our
knowledge, currently the best bot—for the game of dark chess.
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Introduction
1 Summary
Any intelligent agent—artificial or human—operating in an environment where there are other agents with
their own incentives should be designed with game-theoretically sound methods, lest the agents perform
suboptimally or even unsafely. This is a challenging task, but one that will be vital to the success of future
intelligent agents.

To this end, computational game theory in sequential settings has led to numerous breakthroughs in AI dating
back to the start of AI as a discipline. Perhaps most notably, it has led to the first superhuman-level AI agents
for various games including classic two-player zero-sum games such as chess (e.g., Hsu 2002), go (Silver et al.,
2016), and heads-up poker (Brown and Sandholm, 2018); multiplayer games such as multiplayer poker (Brown
and Sandholm, 2019b); identical-interest games such as Hanabi (Lerer et al., 2020); and even expert-level
play in games involving human language such as Diplomacy (Bakhtin et al., 2022).

Despite these major advances, there remain many interesting problems to resolve in computational game
theory, both in theory and in practice. This thesis aims to address some of these important outstanding
problems.

This thesis is partitioned into four broad parts by general topic area. However, many of the results, even in
different parts, are closely related to each other. We will point out relationships between the sections as they
arise.

1.1 Part I: Equilibrium Computation in Adversarial Team Games
This part covers the following papers.

• Luca Carminati, Brian Hu Zhang, Federico Cacciamani, Junkang Li, Gabriele Farina, Nicola Gatti, and
Tuomas Sandholm. Efficient representations for team and imperfect-recall equilibrium computation. in
preparation, 2024a (Subsumes Zhang et al. (2023b) and Zhang and Sandholm (2022b))

• Luca Carminati, Brian Hu Zhang, Gabriele Farina, Nicola Gatti, and Tuomas Sandholm. Hidden-role
games: Equilibrium concepts and computation. ACM Conference on Economics and Computation (EC),
2024b

Outside two-player zero-sum games, notions of equilibrium run into the issue of non-exchangeability: if two
players in a game independently compute (for example) Nash equilibria, their joint strategy may be arbitrarily
bad unless they happen to have computed the same equilibrium, and there is no general way to pick a “best
equilibrium”. This phenomenon limits the ability to apply natural equilibrium concepts beyond two-player
zero-sum games. One of the only settings in which one can define natural solution concepts without running
into exchangeability issues is the setting of adversarial (zero-sum) team games—that is, games in which there
are two teams competing against each other, and their utilities are opposite (e.g., one team wins and the
other team loses). In such games, the key challenge is asymmetric information between different members of
the same team—if all team members had the same information, we could simply treat the team as a single
player with that common information.

We study two different variants of adversarial team games: one where the team assignment is common
knowledge, and one where the team assignment may be hidden from one of the teams.
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Common-knowledge team assignments (Adversarial team games). When the team assignment is
common knowledge to all players, the game is simply called an adversarial team game. The most natural
solution concept for adversarial team games is the correlated team max-min equilibrium (TMECor) (Basilico
et al., 2017). TMECor arises as the mixed-strategy Nash equilibrium of the two-player zero-sum imperfect-
recall game in which team members are merged into a single player. It represents the solution concept in
which team members are allowed to discuss their strategy before the game (including flipping random coins
which are not observed by the opposing team), but are not allowed to communicate once the game begins
except as explicitly permitted by the game rules.

In Zhang and Sandholm (2022b) and Zhang et al. (2023b), we develop parameterized algorithms for computing
TMECor in extensive-form adversarial team games. Our algorithm is based on the enumeration of beliefs.
Intuitively, in this context, a belief is a minimal subset of nodes B such that there exists a strategy x such
that (1) x reaches every node in B, and (2) upon a node in B being reached under x, it is common knowledge
among all team members that set B has been reached.

The time complexity analysis of our algorithm, roughly speaking, results from counting the number of beliefs.
In particular, our algorithm scales at O∗((b + 1)k), where

• b is the branching factor,

• k is the information complexity, a natural parameter that we define that characterizes in a sense the
extent to which the information states of different members of the same team are asymmetric, and

• O∗ hides factors polynomial in the game size.

We show that these bounds are in a sense optimal: setting b = O(1) and k = O(n) can solve n-variable SAT,
and the dependence on d for EFCCE and EFCE cannot be removed under ETH.

Our algorithm also enables the use of regret minimization for adversarial team games with the same time
complexity. This is important in practice because regret minimizers are the fastest practical game solvers,
and indeed we empirically show state-of-the-art performance across a wide variety of games using modern
regret minimization techniques in combination with our construction.

Adversarial team games are equivalent to (timeable) two-player zero-sum games of imperfect recall. Thus,
our results above can be thought of as a way of representing the strategy space of an imperfect-recall player
with a size that is parameterized by the amount of asymmetric information.

Along the way, we also make two other contributions of independent interest in Zhang et al. (2023b).

• We classify precisely the complexity of TMECor and TME in adversarial team games. In particular,
we show that computing the TME value1 is ΣP

2 -complete, and computing the TMECor value is ∆P
2 -

complete2, thus exhibiting a strict separation between the two problems assuming that the polynomial
hierarchy does not collapse.

• We define a notion of DAG-form decision problem that generalizes tree-form decision problems in a
way that the strategy set is still a polytope and regret minimization is still possible. Our notion of
DAG-form decision problem will be used multiple times throughout the remainder of this thesis in
various settings that may at first seem unrelated.

1i.e., deciding whether the value is at least some threshold t, up to exponentially-small error tolerance
2even with no error tolerance
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Hidden team assignments (Hidden-role games). Recently (Carminati et al., 2024b), we were the
first to conduct formal game-theoretic study of a class of games known as hidden-role games, where some
players’ team allegiance is not common knowledge. Such games appear very frequently in both real-world
and recreational applications. For example, consider a group of computers performing a task that requires
information sharing among them. Some computers may have been corrupted by an adversary, but each
computer may not know which other computers have been corrupted. Inadvertently sharing information with
the adversary could lead to negative outcomes. How should the computers communicate and collaborate
to achieve the best possible outcome? Hidden-role games also include well-known recreational games such
as Mafia or The Resistance. Although hugely popular, this class of games has lacked formal study: it was
previously not even clear how to define a solution concept. A reasonable solution concept should take into
account that teams need to collaborate, and that intra-team communication can be compromised due to the
presence of hidden roles. Our techniques therefore draw heavily from the literature on both team games (such
as in the previous section) and cryptography (secure multi-party computation).

We developed a solution concept, which we call the hidden-role equilibrium, that satisfies both the above
conditions. Further, we proved that hidden-role equilibria can—surprisingly—be found in polynomial time!
We also showed bounds on the price of hidden roles, which we define as the factor by which a team would
benefit if it knew the identities of all the adversaries. (This is analogous to the price of anarchy and price of
stability that are common quantities to study in more traditional games.) From a practical standpoint, we
used our techniques to exactly solve five- and six-player variants of the popular game The Resistance: Avalon.

1.2 Part II: Generalized Mechanism Design and Optimal Correla-
tion via Zero-Sum Games

This part covers the following papers.

• Brian Hu Zhang, Gabriele Farina, Andrea Celli, and Tuomas Sandholm. Optimal correlated equilibria
in general-sum extensive-form games: Fixed-parameter algorithms, hardness, and two-sided column-
generation. ACM Conference on Economics and Computation (EC), 2022b

• Brian Hu Zhang and Tuomas Sandholm. Polynomial-time optimal equilibria with a mediator in
extensive-form games. arXiv preprint arXiv:2206.15395, 2022a

• Brian Hu Zhang, Gabriele Farina, Ioannis Anagnostides, Federico Cacciamani, Stephen McAleer,
Andreas Haupt, Andrea Celli, Nicola Gatti, Vincent Conitzer, and Tuomas Sandholm. Computing
optimal equilibria and mechanisms via learning in zero-sum extensive-form games. Conference on
Neural Information Processing Systems (NeurIPS), 2023a

We have developed a framework (Zhang and Sandholm, 2022a) that unifies a large family of game-theoretic
problems under a single umbrella. An incomplete list of the problems that fall under the framework is the
following.

• Computing an optimal (e.g., social welfare-maximizing) correlated equilibrium in a general-sum game:
specifically, optimal extensive-form correlated equilibrium (EFCE) (von Stengel and Forges, 2008),
extensive-form coarse correlated equilibrium (EFCCE) (Farina et al., 2020), or normal-form coarse
correlated equilibrium (NFCCE) (Moulin and Vial, 1978).3

• Computing an optimal communication equilibrium (Forges, 1986; Myerson, 1986). This problem
includes—among others—the popular economic settings of optimal sequential mechanism design and
Bayesian persuasion (information design) (Kamenica and Gentzkow, 2011) as special cases, and is
sometimes referred to as generalized mechanism design.

• Certification equilibria (Forges and Koessler, 2005), which are communication equilibria in which certain
messages are verifiable.

3In particular, I purposefully exclude the normal-form correlated equilibrium (Aumann, 1974), which is more difficult to
reason about in extensive-form games and which we will discuss more in Part III.
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The framework is based on the observation that all of these problems essentially boil down to representing the
strategy space for a certain “meta-agent”, or “mediator”. (For example: for mechanism design, the mediator
is the mechanism designer. For correlated equilibria, the mediator is the correlation device.) The main
positive result of Zhang and Sandholm (2022a) is an efficient LP-based algorithm exists for computing an
optimal equilibrium in this framework. For communication equilibrium, it runs in time polynomial in the size
of the game tree. For certification equilibrium, it runs in polynomial time assuming a generalized form of the
nested range condition (Green and Laffont, 1977). For correlated equilibria, it uses the TB-DAG algorithm
described in Section 1.1 to represent the imperfect-recall decision space of the mediator.

Correlated equilibria are special in the above discussion in that the LP-based algorithm describe above is
not necessarily efficient. In our framework, this is justified by the fact that the mediator for correlated
equilibrium has imperfect recall, and (as discussed in Section 1.1) representing imperfect-recall decision spaces
is hard in general. The relationship between imperfect-recall mediators and correlated equilibria gives rise to
a different interpretation of correlated equilibria as generalized mechanism design with privacy constraints: in
a sense, the imperfect recall of the mediator represents precisely the constraint that the mediator cannot leak
information between players. Indeed, we can use this and other observations to write down an entire family
of equilibria that include the three above bullets as special cases.

We also conducted a more in-depth study of correlated equilibrium notions specifically (Zhang et al., 2022b)4.
In particular, the parameter of information complexity that we discussed in Section 1.1 can be generalized to
also capture general games and optimal correlated equilibria. In this setting, we prove the bounds O∗((b+1)k)
for NFCCE, O∗((b + d)k) for EFCCE, and O∗((bd)k) for EFCE, where b and k are as in Section 1.1 and d is
the game’s depth. Like the general imperfect-recall bounds in Section 1.1, we show that these bounds are in
a sense optimal: setting b = O(1) and k = O(n) can solve NP-complete problems, and the dependence on d
for EFCCE and EFCE cannot be removed under ETH.

In a recent paper (Zhang et al., 2023a), we developed techniques for the problems in this framework that
allowed for the first time the application of deep reinforcement learning (RL) to this large family of problems,
thus allowing for the possibility far greater scalability. Our techniques are based on reducing the general
family of problems, via a Lagrangian relaxation, to a zero-sum game5. Thus, if one can solve zero-sum games
in extensive form, one can also compute solutions in the general framework described above, including optimal
sequential generalized mechanisms.

Our techniques here can be thought of as a generalization of the framework of mechanism design with deep
learning first introduced by Dütting et al. (2019). Compared to that line of work, our techniques make two
improvements. The first is, as above, generality: our techniques work for arbitrary communication equilibria
(“generalized mechanisms”) and in sequential settings. The second is an improved Lagrangian formulation
that does not depend on a Lagrange multiplier that needs to either be known a priori or grow arbitrarily
large. This results in a method that is significantly easier to work with, especially in a deep learning setting
where a large Lagrange multiplier would correspond to the need for deep RL to achieve extremely precise
results. In experiments, we show that the learning-based algorithms are faster than the LP-based algorithms
of Zhang and Sandholm (2022a), and that the improved Lagrangian formulation is critical to performance
with deep RL.

4The three papers (1) Zhang et al. (2023b), (2), Zhang et al. (2022b), and (3) Zhang and Sandholm (2022a) were written and
appeared as preprints in that order (1, 2, 3). However, they appeared in conference publication in the order 2, 3, 1, and in this
thesis we discuss them in the order 1, 3, 2, because that is the cleanest conceptual introduction despite corresponding to neither
the preprint appearance order nor the publication order.

5as before, with imperfect recall in the case of correlated equilibria
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1.3 Part III: Learning in Games
This part covers the following papers.

• Brian Hu Zhang, Gabriele Farina, and Tuomas Sandholm. Mediator interpretation and faster learning
algorithms for linear correlated equilibria in general sequential games. International Conference on
Learning Representations (ICLR), 2024d

• Brian Hu Zhang, Ioannis Anagnostides, Gabriele Farina, and Tuomas Sandholm. Efficient Φ-regret
minimization with low-degree swap deviations in extensive-form games. arXiv preprint arXiv:2402.09670,
2024a

• Brian Hu Zhang, Gabriele Farina, Ioannis Anagnostides, Federico Cacciamani, Stephen Marcus McAleer,
Andreas Alexander Haupt, Andrea Celli, Nicola Gatti, Vincent Conitzer, and Tuomas Sandholm.
Steering no-regret learners to optimal equilibria. ACM Conference on Economics and Computation
(EC), 2024b

One frontier of research in computational game theory studies how uncoupled learning agents behave when
interacting with an environment (for example, a game) over time. The performance of a learning algorithm
can be measured by its regret—that is, the improvement in reward that the agent would have experienced
had it played other strategies instead. Different notions of regret therefore can be characterized by different
sets of functions mapping the strategy played by the agent to other strategies that could have been more
profitable—accommodating larger sets of functions results in more robust notions of regret.

Linear and Low-Degree Swap Regret. We have developed (Zhang et al., 2024d) the fastest algorithm
for minimizing linear-swap regret (Farina and Pipis, 2023), which is the regret against the set of all linear
functions. It takes time polynomial in the number of nodes N and precision ϵ. The algorithm is based on a
perhaps-surprising relationship between the set of linear functions and the set of untimed communication
deviations, which intuitively resemble the set of deviations in a communication equilibrium (as in the previous
section), except that players are not constrained to send a single message at every timestep.

In a recent preprint (Zhang et al., 2024a), we extend this analysis to low-degree polynomials. In particular,
we show that that low regret against the set of degree-k polynomials can be minimized in time NO(kd)3

/ϵ2 if
the game has size N and depth d. This result smoothly interpolates between linear-swap regret (k = 1) and
swap regret (k = N), almost matching the aforementioned bounds at either extreme. Our algorithm works
by extending the framework of Gordon et al. (2008) to nonlinear deviations by using expected fixed points6,
and then extending the relationship between linear-swap deviations and untimed communication deviations
to also encompass low-degree polynomials, by using multiple mediators.

Steering No-Regret Learners. We have shown in a recent preprint (Zhang et al., 2024b) that if we allow
an external observer (a mediator) to help steer the players, much stronger guarantees, such as convergence to
Nash equilibrium, can be achieved. We introduced a mediator with the power to provide payments to the
players, and we showed that the ability of the mediator to succeed in steering depends on how much budget
the mediator has as a function of the time: if the mediator’s budget is constant, we showed that no steering
is possible; if the mediator’s budget grows linearly with time, the mediator can trivially steer the players
toward any behavior by simply providing large enough payments. The case of sublinearly growing payments
is therefore the most interesting case, and indeed we showed that, with reasonable assumptions, a mediator
can steer any no-regret players toward any equilibrium of its choice with only a total budget that increases
sublinearly with the time horizon.

6An expected fixed point of a function ϕ : X → X , where X is convex and bounded, is a distribution D ∈ ∆(X ) such that
Ex∼D ∥ϕ(x) − x∥ = 0. The critical property here is that approximate expected fixed points are significantly easier to compute
than actual fixed points (i.e., points x for which ϕ(x) = x).
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1.4 Part IV: Subgame Solving in Large Games
This part covers the following paper.

• Brian Hu Zhang and Tuomas Sandholm. Subgame solving without common knowledge. Conference on
Neural Information Processing Systems (NeurIPS), 2021b

Subgame solving is the idea that one should refine a strategy online while playing the game, instead of playing
solely from some precomputed strategy such as a policy network. As an idea, it is perhaps older than AI as a
field7 and has been vital in all of the breakthroughs mentioned in the first paragraph. In perfect-information
settings, it has been used since the beginnings of AI as a field and has been fundamental to the success of
strong agents—for example, the superhuman chess agent Leela Chess Zero drops to “only” human expert
level without subgame solving, but is easily superhuman with subgame solving. However, the application of
subgame solving to imperfect-information settings, especially in a game-theoretically safe manner, is much
more challenging, and has only been studied recently (Burch et al., 2014; Moravcik et al., 2016; Brown and
Sandholm, 2017). These techniques were one of the core ingredients of the superhuman breakthroughs in
no-limit Texas hold’em (NLTH) poker (Brown and Sandholm, 2018, 2019b).

All prior techniques for safe subgame solving suffer from a shared weakness that limits their applicability:
they require reasoning about the common-knowledge closure of the player’s current information set—that
is, the smallest set of states in which it is common knowledge that the current state lies. In poker, this
set is manageable; however, in many other games, it is not. I developed knowledge-limited subgame solving
(KLSS) (Zhang and Sandholm, 2021b), which is the first known technique that does not have this weakness.
Instead, this technique can work by only expanding the nodes that are still reachable in the game tree
from the player’s current information set. We use our technique to implement, to our knowledge, the first
and currently strongest agent for the game dark chess8, an imperfect-information variant of chess in which
common-knowledge closures are too large to be tackled by prior subgame-solving techniques.

This research is a new way of thinking about subgame solving with imperfect information, and has already
led to impact. We specifically emphasize the work of Liu et al. (2023), who extended our methods to develop
a more theoretically sound version of KLSS, and applied it to achieve improved performance in Mahjong.

1.5 Other Papers to be Added to the Dissertation
In the interest of not making the proposal longer than it already is, multiple already-accepted or published
papers are excluded from this proposal but will be included in the thesis. In reverse chronological order, these
are:

• Brian Hu Zhang and Tuomas Sandholm. Exponential lower bounds on the double oracle algorithm in
zero-sum games. International Joint Conference on Artificial Intelligence (IJCAI), 2024a

• Brian Hu Zhang and Tuomas Sandholm. On the outcome equivalence of extensive-form and behavioral
correlated equilibria. AAAI Conference on Artificial Intelligence (AAAI), 2024b

• Brian Hu Zhang, Luca Carminati, Federico Cacciamani, Gabriele Farina, Pierriccardo Olivieri, Nicola
Gatti, and Tuomas Sandholm. Subgame solving in adversarial team games. Conference on Neural
Information Processing Systems (NeurIPS), 2022a

• Brian Hu Zhang and Tuomas Sandholm. Finding and certifying (near-)optimal strategies in black-box
extensive-form games. AAAI Conference on Artificial Intelligence (AAAI), 2021a

• Brian Hu Zhang and Tuomas Sandholm. Small Nash equilibrium certificates in very large games.
Conference on Neural Information Processing Systems (NeurIPS), 2020a

• Brian Hu Zhang and Tuomas Sandholm. Sparsified linear programming for zero-sum equilibrium finding.
International Conference on Machine Learning (ICML), 2020b

7For example, Alan Turing and David Champernowne wrote a chess engine Turochamp in 1948 using minimax search and
node heuristics, which can be considered a form of subgame solving.

8also known as “fog of war chess” on chess.com, the most popular website on which this variant is played among humans
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The following paper may also be included in part:

• Emanuel Tewolde, Brian Hu Zhang, Caspar Oesterheld, Manolis Zampetakis, Tuomas Sandholm, Paul
Goldberg, and Vincent Conitzer. Imperfect-recall games: Equilibrium concepts and their complexity.
International Joint Conference on Artificial Intelligence (IJCAI), 2024

2 Preliminaries
Here, we introduce the various pieces of background information that will be repeatedly referenced throughout
this thesis. Background information that is more specialized to a single section of the thesis is deferred to
that section.

2.1 General Notation
Unless otherwise stated, we will use the following notation:

• Vectors x ∈ Rn will be in italic boldface, as will generic indices into such vectors, which will be denoted
either x[i] or xi. Matrices will be in non-italic boldface, e.g., A.

• If A, B are sets then AB is the set of functions f : B → A.
• f ≲ g means f = O(g). Similarly, f ≳ g means f = Ω(g), and f ∼ g means f = Θ(g).
• ◦ denotes element-wise multiplication of vectors or matrices.
• ∆(S) is the probability simplex on set S, that is, ∆(S) := {x ∈ RS

≥0 :
∑

s∈S x(s) = 1}. If x ∈ ∆(S)
then suppx denotes the support of x.

• co S denotes the convex hull of a set S.
• Õ, Ω̃, Θ̃ hide logarithmic factors. That is, f = Õ(g) if f = O(g logk g); f = Ω̃(g) if f = Ω(g log−k g)

(where in both cases k is an absolute constant), and f = Θ̃(g) if f = Õ(g) and f = Ω̃(g).
• For any set S, Id : S → S is the identity function.
• 1{b} is the indicator of the condition b
• [n] = {1, . . . , n}.
• [x]+ = max(x, 0).

2.2 Extensive-Form Games
Extensive-form games are the focus of the majority of this thesis. A finite extensive-form game (hereafter
simply game) Γ with n players consists of the following components.

1. A tree of nodes or histories H, rooted at a root history ∅ ∈ H. The leaf nodes of H are called terminal
nodes, and Z will denote the set of terminal nodes. The edges out of a given node h are identified with
actions a ∈ A, and the subset of actions legal at h is A(h). The child of h reached by following action a
is denoted ha. The branching factor b = maxh |A(h)| is the maximum number of legal moves at any
node.

2. A partition H\Z = HC ⊔H1 ⊔ · · · ⊔Hn, where Hi is the set of nodes at which player i acts, and player
0 is chance (or nature).

3. For each player i ∈ [n], a utility function ui : Z → [−1, 1] giving player i’s utility for reaching any given
terminal node.

4. For each player i ∈ [n], a partition Ii of Hi into information sets, or infosets. Any two nods h, h′ in the
same infoset I ∈ Ii must have the same set of legal actions, which we will denote A(I).

5. For each node h ∈ HC, a probability distribution xC(·|h) ∈ ∆(A(h)), denoting how chance selects its
action at node h.

The game tree induces a natural ordering ⪯ on sets of nodes: we will write S ⪯ S′ if there are histories
h ∈ S, h′ ∈ S′ such that h′ is a descendant of h. If either S or S′ is a singleton, we will omit the braces: for
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example, h ⪯ h′ denotes that h′ is a descendant of h. We will use |h| to denote the depth of history h: that
is, |∅| = 0 and |ha| = |h|+ 1. The depth of game Γ is the maximum depth of any history.

Perfect recall. At a history h ∈ H, the sequence σi(h) of player i is the list of information sets I ∈ Ii

encountered by player i on the path to h, and actions taken at those information sets, not including at h itself.
We say that a player i has perfect recall if, for every infoset I, every history h ∈ I has the same sequence,
which we will denote σi(I) and call the parent sequence of I. The game Γ has perfect recall if all of its players
do. We will denote by Σi the set of sequences of a player i.

Timeability. An extensive-form game is timeable if any path from the root to any node in the same infoset
has the same length (i.e. all histories belonging to the same infoset have the same depth). Formally, the
game is is timeable if for every infoset I ∈ I and every h, h′ ∈ I, we have |h| = |h′|.

2.2.1 Strategies
A pure strategy of player i is a choice of one action per infoset of player i. The realization form of a pure
strategy is the vector xi ∈ {0, 1}Z where xi[z] = 1 if and only if the player plays all the actions on the ∅→ z
path.

A mixed strategy is a distribution πi ∈ ∆(Xi). In many cases, we will only care about the realization form of
a mixed strategy, which is simply defined to be Exi∼πi xi. The set of realization-form mixed strategies is
hence coXi. A mixed strategy is behavioral if its action choices at different information sets are independent.

Multiple strategies can have the same realization form. If so, we will call those strategies (realization-
)equivalent. Unless otherwise stated, we will not distinguish between realization-equivalent strategies. Kuhn’s
theorem (Kuhn, 1953) guarantees that, for players with perfect recall, every mixed strategy is equivalent to
a behavioral strategy, and thus it is usually without loss of generality to work with behavioral strategies
(although we will see in Section 10 that it is not always the case!)

A correlated strategy profile (or simply correlated profile) is a distribution π ∈ ∆(X1 × · · · × Xn). If π factors
as a product distribution π = (π1, . . . , πn) ∈ ∆(X1) × · · · ×∆(Xn), we will drop the word correlated and
simply call π a strategy profile or profile. If the word correlated is not used, all profiles are assumed to
be uncorrelated. For uncorrelated profiles, we will usually circumvent writing the distribution at all, by
experessing each player’s mixed strategy πi as a realization-form mixed strategy and thus expressing π as a
tuple x = (x1, . . . ,xn) ∈ coX1 × · · · × coXn.

Every profile induces a distribution over terminal nodes, that results from sampling a pure profile x ∼ π
and following those actions through the game, sampling chance actions where needed. We will use z ∼ π (or
z ∼ x) to denote a sample from this distribution. The expected value of player i under profile π, denoted
ui(π), is defined in the natural manner:

ui(π) := E
z∼π

ui(z).

We will sometimes use partial profiles, which are profiles defined for only a subset of players. In particular, if
π is a (possibly correlated) profile then we will use π−i to denote its marginal on all players except i.

For uncorrelated profiles x = (x1, . . . ,xn), it is critical to note that the expected value ui(x) is linear in each
player’s strategy. That is, for every fixed opponent profile x−j , the expected value ui(xj ,x−j) is linear in xj .
In particular, we have

ui(x) =
∑
z∈Z

xC[z]u(z)
n∏

i=1
xi[z]

where xC[z] is the probability that chance plays all actions on the path to z.

A game is two-player zero-sum if there are two players (which will always be denoted ▲ and ▼), and u▲ = −u▼.
In this case, we will generally use the notation u := u▲, X = X▲, and Y = X▼.
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2.2.2 Equilibria
For our purposes, to solve a game will mean to find an equilibrium of it, for some equilibrium concept of
interest. Here we identify some equilibrium concepts that we will use throughout the paper.

The Nash equilibrium (Nash, 1950) is the oldest and best-known notion of equilibrium for general games. An
ϵ-Nash equilibrium is an uncorrelated strategy profile x = (x1, . . . ,xn) ∈ coX1 × · · · × coXn such that no
player can improve by more than ϵ using any unilateral deviation:

ui(x′
i,x−i) ≤ ui(xi,x−i) + ϵ

for every i ∈ [n] and x′
i ∈ Xi. Every game has a Nash equilibrium in mixed strategies.

Throughout this thesis, in various places we will also be interested in various notions of correlated equilibria.
In the greatest possible generality, a notion of correlated equilibrium is defined by a tuple of sets of
transformations Φ = (Φ1, . . . , Φn), where Φi ⊆ (coXi)Xi is a set of transformations of player i’s strategies.
Then an ϵ-Φ-equilibrium is a correlated profile for which

E
x∼π

[ui(ϕi(xi),x−i)− ui(xi,x−i)] ≤ ϵ

for every i ∈ [n] and x′
i ∈ Xi. Two extremes of this definition are the normal-form coarse-correlated

equilibrium (NFCCE), for which Φi is the set of all constant transformations {ϕx∗
i

: xi 7→ x∗
i | x∗

i ∈ Xi},
and the normal-form correlated equilibrium (NFCE), for which Φi = (coXi)Xi is the set of all possible
transformations.

In zero-sum games, all the notions of correlated equilibria collapse to Nash equilibria9, and the Nash equilibria
are precisely the saddle-point solutions (x,y) to the convex bilinear saddle-point problem

max
x∈co X

min
y∈co Y

u(x,y) = max
x∈co X

min
y∈co Y

∑
z∈Z

p(z)u(z)x(z)y(z) = max
x∈co X

min
y∈co Y

x⊤Ay (1)

where p(z) is the probability that chance plays all actions on the path to z, and the matrix A is defined by
A[i, j] =

∑
z∈Z:σ▲(z)=i,σ▼(z)=j p(z)u(z). We will call the saddle-point value of (1) the equilibrium value of

Γ, and denote it u∗. Nash equilibria in zero-sum games are hence exchangeable: if (x1,y1) and (x2,y2) are
Nash equilibria, then so are (x1,y2) and (x2,y1).

2.2.3 Tree-Form Decision Making
It will be convenient at various points in the paper to abstract away the majority of a game and focus solely
on the decision problem faced by a single player. When this happens, we will generally omit the subscript i;
for example, x will denote a generic strategy for the player. For a perfect-recall player, this decision problem
can be described as a tree-form decision problem. A tree-form decision problem consists of a tree of nodes T ,
that are each one of two types:

• decision points j ∈ J , at which the player must select an action a ∈ A(j), and

• observation points σ ∈ Σ, at which the player makes an observation.

For a perfect-recall player in an extensive-form game, the decision and observation points correspond
respectively to the information sets and sequences of that player. Unless otherwise stated, we will assume
that decision and observation points alternate, and that the root ∅ is an observation point—both of these
are without loss of generality. The observation point child of j reached by taking action a is denoted ja, and
the parent of j is denoted pj . The set of children of σ is denoted Cσ. For notational simplicity, when x ∈ RΣ

is any vector indexed by observation points and j is a decision point, we will use x[j∗] ∈ RA(j) to denote the
subvector of x indexed only by the children of j.

We now define strategies in tree-form decision problems analogously to strategies in games. A pure strategy
is a choice of one action at every decision point. The sequence form of a pure strategy is the vector x ∈ X

9In particular, one can show that, for any ϵ-NFCCE, the product distribution with the same marginals is a 2ϵ-Nash equilibrium
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Algorithm MWU: Multiplicative weight update ∆(n).
1: initialize z1 ← 1, t← 0
2: procedure NextStrategy(): return xt := zt/∥zt∥1
3: procedure ObserveUtility(ut): zt+1 ← zt ◦ exp(ηut)

Algorithm RM+: Regret matching plus on ∆(n).
1: initialize z1 ← 0, t← 0
2: procedure NextStrategy():
3: if zt = 0 then return xt := zt/∥zt∥1
4: else return xt := any strategy
5: procedure ObserveUtility(ut): zt+1 ← [zt + ut − ⟨ut,xt⟩]+

indexed by sequences σ ∈ Σ, for which xi[σ] = 1 if and only if the player plays all actions on the ∅ → σ
path in T . The sequence-form mixed strategies are then, once again, the convex hull of X . Conveniently, the
sequence-form mixed strategies are precisely the strategies obeying a natural family of linear constraints (von
Stengel, 1996; Romanovskii, 1962):

coX =

x ∈ RS
≥0

∣∣∣∣∣∣ x[∅] = 1, x[pj ] =
∑

a∈A(j)

x[ja] ∀j ∈ Σ

.

Clearly, the sequence-form and realization-form representations are equivalent: given a sequence-form vector
xi for a player i, one recovers the realization form by xi[z] := xi[σi(z)]. Which we choose to use will depend
on which is most convenient. In both cases we will denote the set of pure strategies by Xi.

2.3 No-Regret Learning and Counterfactual Regret Minimization
No-regret learning is a popular framework for decision making in repeated settings. As we will see, algorithms
based on no-regret learning are the most popular and fastest practical algorithms for equilibrium computation.
In this section we will discuss only algorithms for external regret minimization in extensive-form games; we
defer the extension to the more general notion of Φ-regret to Part III.

A decision maker is faced with the following interation with an adversary. There is a convex strategy set
X , which for our purposes will always be a subset of [0, 1]n and usually be the set of mixed sequence-form
strategies of some tree-form decision problem. The interaction lasts for T timesteps. At each timestep t, the
decision maker selects a point xt ∈ coX . The adversary, observing xt, selects a utility vector ut ∈ Rn such
that ⟨ut,x⟩ ∈ [−1, 1] for all x ∈ X . After T timesteps, the (averaged, external) regret is defined as

Reg(T ) := max
x∈X

1
T

T∑
t=1

〈
ut,x− xt

〉
.

2.3.1 Regret Minimization on Simplices
The most basic setting for no-regret learning is the setting in which X is the simplex ∆(n). Here, we introduce
two simple no-regret learning algorithms on the simplex. Here, we review two common regret minimization
algorithms which we will refer to repeatedly throughout this thesis, and some important variants of them.

16



Algorithm OMWU: Predictive (optimistic) multiplicative weight update ∆(n).
1: initialize z1 ← 1, t← 0
2: procedure NextStrategy(ũt)
3: z̃t ← zt ◦ exp(ηût)
4: return xt := z̃t/∥z̃t∥1
5: procedure ObserveUtility(ut): zt+1 ← zt ◦ exp(ηut)

Algorithm PRM+: Predictive (optimistic) regret matching plus on ∆(n).
1: initialize z1 ← 0, t← 0
2: procedure NextStrategy(ũt):
3: z̃t ← [zt + ũt −

〈
ũt,xt−1〉]+

4: if z̃t = 0 then return xt := z̃t/∥z̃t∥1
5: else return xt := any strategy
6: procedure ObserveUtility(ut): zt+1 ← [zt + ut − ⟨ut,xt⟩]+

Multiplicative Weight Update. The multiplicative weights algorithm is given in Algorithm MWU. It is
parameterized by a single hyperparameter η > 0, called the step size. Multiplicative weights satisfies the
following regret bound.

Proposition 2.1. The average external regret of MWU satisfies:

RegMWU(T ) ≲ log n

ηT
+ η ≲

√
log n

T

where the equality follows by taking the step size η =
√

(log n)/T .

Regret Matching Plus. The regret matching algorithm (Hart and Mas-Colell, 2000) is a simple,
hyperparameter-free no-regret learning algorithm. Here, we will introduce a better, more recent variants of it,
known as regret matching plus (Algorithm RM+) (Tammelin, 2014).

Proposition 2.2 (Tammelin 2014). The average external regret of RM+ satisfies RegRM+(T ) ≲
√

n/T .

As alluded to above, RM+ is that (unlike MWU) it is hyperparameter-free: there are no step sizes or other
hyperparameters to tune. Similarly, RM+ is also scale-invariant: if given utility sequence u1, . . . ,uT , it would
produce the same iterates as if it had been given Cu1, . . . , CuT for any constant C > 0. These properties
make RM+ extremely powerful in practice. In particular, despite a worse theoretical dependence on n, RM+ is
almost always practically superior to MWU. Therefore, we will use it in almost all our experiments.

Predictive (Optimistic) Algorithms. Predicitions can be used to speed up regret minimization algorithms
even further. In essence, predictive algorithms take an additional input on every timestep t, which is a
prediction ũt of the utility vector that it will observe. The algorithm then uses the predicted utility vector to
perform a temporary update before returning its strategy. The predictive variants of MWU and RM+ are known
respectively as optimistic multiplicative weights (OMWU, Chiang et al. 2012; Rakhlin and Sridharan 2013a,b;
Syrgkanis et al. 2015) and predictive regret matching plus (PRM+, Farina et al. 2021c).10 Note that by setting
ũt = 0, the predictive variants collapse to the non-predictive variants. Conventionally (i.e., unless otherwise
stated), the predicition is set to the previous observed utility, that is, ũt = ut−1.

Predictive regret matching has the same worst-case guarantee as non-predictive regret matching, but can be
significantly faster, both in theory and in practice, if the predictions are accuarate.

10We use different wording (optimistic vs predictive) to be consistent with usage of past authors.
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Algorithm CFR: Counterfactual regret minimization on tree-form decision problems T . For each decision
point j, Rj is a regret minimizer on ∆(A(j)).

1: initialize t← 0
2: procedure NextStrategy()
3: t← t + 1
4: xt[∅]← 1
5: for each decision point j, in top-down order do
6: rt

j ← Rj .NextStrategy()
7: xt[j∗]← xt[pj ]rt

j

8: return xt

9: procedure ObserveUtility(ut)
10: vt ← ut

11: for each decision point j, in bottom-up order do
12: Rj .ObserveUtility(vt[j∗])
13: vt[pj ]← vt[pj ] +

〈
rt

j ,vt[j∗]
〉

2.3.2 Counterfactual Regret Minimization (CFR)
In this subsection, we will introduce counterfactual regret minimization (Zinkevich et al., 2007), following the
more recent exposition of Farina et al. (2019a). Intuitively, CFR allows one to build a regret minimizer on a
tree-form strategy set X by running local regret minimizers at each decision point, and combining them in a
clever way. The guarantee given by CFR can be expressed as follows. Call a subset S ⊆ J playable if there
is a pure strategy that reaches every decision point in S, that is, there is a pure strategy x ∈ X such that
x[pj ] = 1 for every j ∈ S. Then:

Proposition 2.3 (Zinkevich et al. 2007; Farina et al. 2019a). The average external regret of CFR
satisfies

RegCFR(T ) ≤ max
P

∑
j∈P

Regj(T ) ≤
∑
j∈J

Regj(T )

where the max is taken over all playable sets P , and Regj(T ) is the regret of the local regret minimizer
at decision point j.

In particular, with (O)MWU and (P)RM+ as the regret minimizers, we get the respective regret bounds

RegCFR-(O)MWU(T ) ≲ |J |
√

log b

T
≤ |Σ|√

T
and RegCFR-(P)RM+(T ) ≲ |J |

√
b

T
≤ |Σ|√

T

where b is the branching factor.

Several variants of CFR with specific choices of local regret minimizer have special common names. In
particular, CFR with RM+ or PRM+ is known as CFR+ or PCFR+ respectively. The latter is currently the fastest
regret minimizer in practice in most settings, including game solving (Farina et al., 2021a)11.

11A notable exception is poker and variants thereof, where discounted CFR (Brown and Sandholm, 2019a), which we will not
need for this thesis, is sometimes faster.
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2.3.3 Relation to Equilibrium Finding
There is a well-known, tight connection between no-regret learning and equilibria in games. In particular, we
have the following folk result whose proof follows almost directly from the definitions of NFCCE and regret:

Proposition 2.4. In any game, if all players run no-regret learning algorithms over their strategy
sets Xi with utilities ut(xi) := ui(xi,x

t
−i), then after T rounds, the correlated average strategy profile

π := unif({x1, . . . ,xT }) is an ϵ-NFCCE, where ϵ = maxi∈[n] Regi(T ) and Regi(T ) is the external
regret of player i.

In zero-sum games, using the fact that NFCCEs collapse to Nash, we have the following analogous result.

Proposition 2.5. In any zero-sum game, if both players run no-regret learning algorithms, then after
T rounds, the uncorrelated average strategy profile (x̄, ȳ), where x̄ = 1

T

∑T
t=1 x

t (and analogous for
ȳ) is an ϵ-equilibrium, where ϵ = Reg▲(T ) + Reg▼(T ).

Any no-regret learning algorithm for zero-sum games can be run with either simultaneous or alternating
updates. While the above theoretical results apply only to the simultaneous versions, certain algorithms are
also known to converge with alternating updates12.

12For example, this is known to be true for CFR+ (Burch et al., 2019), but is nontrivial to show: the original proof attempt by
Tammelin et al. (2015) was flawed.
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Part I

Equilibrium Computation in Adversar-
ial Team Games
3 Efficient Parameterized Representations for Team

and Imperfect-Recall Equilibrium Computation

3.1 Introduction
In two-player zero-sum games, Nash equilibria in mixed strategies are the most natural solution concept
for modeling rational value-maximizing players. Mixed strategies specify the behavior of a player as a
distribution over pure (deterministic) strategies. However, the exponential number of such strategies makes
the computation of Nash equilibria potentially inefficient. A key assumption to circumvent this issue is perfect
recall. In a perfect-recall game, the players never forget previously received information or played actions.
When this assumption is satisfied,

1. Kuhn’s theorem (Kuhn, 1950a) states that mixed strategies are equivalent to behavioral strategies, which
are the strategies expressible as a product of distributions over actions at each decision point.

2. The sequence-form representation (von Stengel, 1996; Romanovskii, 1962) of the strategy spaces enables
efficient computation of Nash equilibria via a wide variety of different methods. In particular, uncoupled
learning dynamics such as CFR converge to a Nash equilibrium by employing a regret minimizer at each
decision point of the strategy tree.

There have been significant recent speed improvements to CFR-based techniques (Tammelin et al., 2015;
Brown and Sandholm, 2019a; Farina et al., 2021c; Zhang et al., 2024e), and other techniques have been
built on top of CFR-based techniques, for example, abstraction algorithms (Sandholm, 2015a,b), subgame
solving (Gilpin and Sandholm, 2006; Ganzfried and Sandholm, 2015a; Moravcik et al., 2016; Brown and
Sandholm, 2017; Moravč́ık et al., 2017; Brown and Sandholm, 2018, 2019b), further enhancing scalability.
Notable results on large-scale games include poker (Bowling et al., 2015; Moravč́ık et al., 2017; Brown and
Sandholm, 2018, 2019b), Stratego (Perolat et al., 2022), and Diplomacy (, FAIR).

This work seeks to extend these techniques beyond the perfect-recall two-player zero-sum setting. In particular,
we focus on computing mixed Nash equilibria in the two equivalent settings of imperfect-recall games and
adversarial team games13, for which it is known that computing a Nash equilibrium is NP-hard (Koller and
Megiddo, 1992).

Two-player zero-sum imperfect-recall games are characterized by players who may forget information at
some point in the game. In this case, a mixed strategy corresponds to a distribution over pure strategies,
while a behavioral strategy corresponds to a distribution that performs an independent sampling procedure
at each decision point. Unlike for perfect-recall games, Kuhn’s theorem does not apply in imperfect-recall
games: mixed strategies can in general be more expressive than behavioral strategies. Imperfect-recall games
have been employed in the literature to compress a game representation through forgetfulness (this is the
case of some abstraction techniques (Waugh, 2009; Lanctot et al., 2012; Kroer and Sandholm, 2016)), or by
considering human-like agents with imperfect memories (Camerer, 2003).

13This equivalence is formalized in Section 3.2.2.
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Adversarial team games portray two teams of agents facing adversarially. Each team member has utilities
identical to her teammates and opposite to members of the opposing team. Effective team coordination
is a non-trivial challenge in this setting because team members may have different imperfect information
about the current node and no communication channels are available during the game. Intuitively, the player
cannot distinguish nodes that are different due to private information revealed to a teammate (such as private
cards revealed to them solely). In this case, mixed strategies correspond to strategies coordinated before
the start of the game through ex-ante coordination, while behavioral strategies represent strategies that are
not coordinated, in the sense that each agent samples their actions independently from other teammates.
Recreational and non-recreational examples of team games include Bridge, security games with multiple
defenders and attackers (Jiang et al., 2013), and poker with colluding agents.

Overall, team games are a more common application setting than imperfect-recall games, have many competing
works in the equilibrium computation literature, and allow a more intuitive game description. On the other
hand, imperfect-recall games yield a cleaner formalism. As these two perspectives are equivalent for our
purposes, we choose to adopt an imperfect-recall perspective throughout the rest of the paper to simplify the
notation, while using team games to make more intuitive examples for some of the notions introduced.

The main objective of this paper is to propose a novel representation for team and imperfect-recall games by
constructing an equivalent two-player zero-sum perfect-recall game. This enables the use of all the solving
techniques previously developed for perfect-recall two-player zero-sum games.

We now summarize the contributions of the paper. In Sections 3.3 and 3.3.1, we present an algorithm that
converts any two-player zero-sum imperfect-recall game into a strategically-equivalent perfect-recall game
which we call the belief game. We formally prove the equivalence between the two games, and in Section 3.3.2
we show worst-case bounds on the size of the belief game in terms of the number of histories of the original
game. In particular, we show that the worst case the number of histories of the belief game is O(bdk), where b
is the maximum branching factor of the original game, d is its depth, and k is a parameter we introduce called
the information complexity, which intuitively measures the amount of information that can be forgotten by
the player—or, in the case of team games, the amount of information asymmetry between players on the
team.

In Section 3.4, we introduce a notion of DAG-form decision-making that we use to generalize counterfactual
regret minimization (CFR) beyond tree-form games. While we introduce it for the purpose of applying it to
imperfect-recall games, we believe it to be of independent interest as well.

In Section 3.5, we use DAG-form decision problems to efficiently represent each player’s strategy space in
the belief game through a construction we call the team-belief DAG (TB-DAG). We show that the TB-DAG
representation of a game with imperfect recall can be exponentially smaller than the size of the belief game
and that it can be constructed directly from the original game without first constructing the belief game,
thus leading to exponentially faster algorithms in the worst case. This construction improves the worst-case
efficiency14 of our technique to O(|H|(b + 1)k+1), where |H| is the number of nodes in the original game. We
also show that this bound is essentially optimal: under reasonable computational assumptions (namely, the
exponential time hypothesis), we show that there cannot exist an algorithm for solving even single-player
games of imperfect recall whose runtime is of the form f(k)poly(|H|), for any function f .

In Section 3.6 we investigate the computational complexity of computing mixed Nash equilibria with imperfect
recall. We prove that computing a max-min strategy in mixed or behavioral strategies in games where both
players have imperfect recall is ∆P

2 -complete and ΣP
2 -complete respectively.

Section 3.7 presents further discussions comparing different notions presented in the paper, providing further
insights on the technical decisions made.

In Section 3.8, we evaluate our methods empirically by benchmarking our construction on a standard testbed
of imperfect-information games, compared to state-of-the-art baselines. We find that our technique allows
much faster equilibrium computation when the information complexity k of the game is low.

14By efficiency here we mean the size of the representation of the strategy spaces of the players. Algorithms such as CFR
have per-iteration complexity that scales linearly in this size.
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We have defined equilibrium concepts for team games by using an “equivalent” coordinator game that is
two-player zero-sum imperfect recall. It turns out that, in fact, every two-player zero-sum imperfect-recall
game Γ′ has an ATG whose coordinator game is Γ′: indeed, given such a Γ′, consider the ATG Γ in which
every information set is assigned to a different player. Therefore, team games and imperfect-recall games are
in a very strong sense equivalent. All of the results of this section, unless otherwise stated, therefore apply
equally to team games and to two-player zero-sum imperfect-recall games.

In this section, we opt to consider the point of view of two-player zero sum games with imperfect recall. A
summary of the different equivalent terms that are used in the two settings can be found in Table 2.

We introduce the fundamental contribution of the paper: a novel technique to compute a mixed Nash
equilibrium in two-player zero-sum imperfect-recall games (or equivalently to compute a TMECor in adversarial
team games) based on the construction of an equivalent two-player zero-sum game with perfect recall.

Our technique attains the perfect-recall condition by suitably changing the information available to the
players, as well as their action sets. The main intuition behind the belief game is to consider the point of
view of a perfect recall player in place of the imperfect-recall one. Differently from the imperfect-recall player,
this player reasons only using information the player would never forget due to imperfect recall and chooses
an action for every possible information set the imperfect-recall player may be in. The game then transitions
by applying the action corresponding to the information set of the current node. Crucially, the perfect-recall
player can strategically refine the set of reached nodes over time by carefully considering reachable nodes
given the played strategy and the perfect-recall results of her actions.

After introducing the main concepts and the construction algorithm, we prove that the original and the belief
games are strategically equivalent. This means that the perfect-recall player we introduce is an equivalent
representation of both the imperfect-recall player and the corresponding preplay coordinated team (thanks to
the considerations from Section 3.2.2).

3.2 Preliminaries
Since this part deals with equilibrium computation in team games and games with imperfect recall, we first
introduce some notation and definitions that pertain to these. For this part, unless otherwise stated, all
games are assumed to be timeable.

3.2.1 Behavioral and Mixed Max-Min Strategies
Recall first the definition of a mixed-strategy Nash equilibrium for a game:

Definition 3.1 (Mixed-strategy Nash equilibrium). In a two-player zero-sum game, a (realization-form) Nash
equilibrium is a saddle-point solution to the optimization problem

max
x∈co X

min
y∈coY

u(x,y).

Since this problem is a bilinear saddle-point problem and coX and coY are convex, the minimax theorem
applies, and the maximinization and minimization can be freely swapped without changing the value of the
game. The optimal value of the above program is the Nash equilibrium value of the game.

For games with imperfect recall, restricting to behavioral strategies is a nontrivial restriction. Recall that
a behavioral strategy is a mixed strategy that mixes independently at each information set. Thus, the
realization form of a behavioral strategy is obtained by multiplying the probability of picking each action
of the player on the ∅→ z path. We will use X̂i to denote the set of realization-form behavioral strategies
of a player i. Recall that Kuhn’s theorem states that, in games with perfect recall, behavioral and mixed
strategies are realization-equivalent. That is, X̂i = coXi.

Definition 3.2 (Behavioral max-min strategy). In a two-player zero-sum game, a behavioral max-min strategy
x ∈ X̂ is a solution to the optimization problem

max
x∈X̂

min
y∈Ŷ

u(x,y)
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Figure 1: An example of an adversarial team game. There are three players: P1 and P2
are on team ▽▽▽, and P3 is on team ▽▽▽. Dotted lines connect nodes in the same information
set. The (total) utility of ▽▽▽is listed on each terminal node. The root node is a nature node,
at which nature selects uniformly at random.

The behavioral max-min value is the optimal value of the above problem. Since X̂ and Ŷ are not necessarily
convex sets, the minimax theorem does not apply, so the maximization and minimization can not necessarily be
swapped. Therefore—unlike the mixed-strategy Nash—the behavioral max-min strategy is not an equilibrium.
Further, in games with imperfect recall, the tree-form decision problem is not a valid representation of the
set of realization-form strategies. Therefore, we will need different techniques to tackle such games.

3.2.2 Adversarial Team Games
The general framework of adversarial team games has first been studied by von Stengel and Koller (1997) in
the context of normal form games, while Celli and Gatti (2018) first addressed them in an extensive-form
setting. Adversarial team games describe situations where multiple agents are organized in two-teams receiving
zero-sum payoffs. The paper focuses on the setting in which no extra communication channel is available to
the players during the game, but they are allowed to communicate freely before the start of the game. This
means that the only form of coordination across players’ strategies available is preplay coordination, i.e. any
coordination has to be prepared before the start of the game.

Adversarial team games can be modeled as extensive-form games as follows:

Definition 3.3 (Adversarial team game). An extensive-form, perfect-recall game is said to be an adversarial
team game (ATG), or two-team zero-sum game iff:

• the player set is partitioned in two sets called teams, symbolized by ▽▽▽and ▽▽▽. Formally, [n] = ▽▽▽∪ ▽▽▽;
• the utilities of the players belonging to the same team are identical, and the total utilities of the two

team are opposites. Formally:

ui = uj for all i, j ∈ ▽▽▽

ui = uj for all i, j ∈ ▽▽▽∑
i∈ ▽▽▽

ui = −
∑
j∈▽▽▽

uj

In adversarial team games, the Nash equilibrium fails to take into account the fact that teams can coordinate
among themselves. Indeed, it is possible for there to be a Nash equilibrium in which two teammates could
profit by jointly switching strategies, but no individual player can profit from a unilateral deviation. To take
into account these joint deviations, it is most natural to reformulate an adversarial team game as a two-player
zero-sum game of imperfect recall, in which a team coordinator plays on behalf of all members of that team.
In this manner, deviations of the team coordinator correspond to simultaneous, joint deviations of all team
members. We now formalize this conversion.
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Definition 3.4 (Coordinator game). Let Γ be an adversarial team game. The coordinator game Γ′ corre-
sponding to Γ is the two-player zero-sum imperfect-recall game Γ′, where

I ′
▲ =

⋃
i∈ ▽▽▽

Ii, I ′
▼ =

⋃
i∈▽▽▽

Ii, u′
▲ =

∑
i∈ ▽▽▽

ui, and u′
▼ =

∑
i∈▽▽▽

ui.

The coordinator game merges all members of a team ( ▽▽▽or ▽▽▽) into a coordinator (▲ or ▼). Therefore:

• Pure strategies of a coordinator correspond to pure profiles of the team.

• Behavioral strategies of a coordinator correspond to behavioral profiles of the members of the team.
Since behavioral strategies enforce actions at different infosets to be independently sampled, this means
that team members can privately sample randomness for their own personal use but cannot share that
randomness with teammates.

• Mixed strategies of a coordinator correspond to correlated strategy profiles of the members of the team.
In a correlated profile, team members may jointly sample randomness that they use to correlate their
actions.

We remark on the role that preplay coordination has in allowing the coordination capabilities modeled by the
coordinator game. In fact, before starting the game, players are allowed to jointly sample a pure plan from
their coordinator’s mixed strategy and then individually play the specified actions at the infoset in which
they play. This allows the team to play any randomized strategy of the coordinator effectively.

The coordinator game allows us to define notions of equilibrium specialized for team games:

Definition 3.5. A team max-min equilibrium with correlation (TMECor) of an ATG Γ is a mixed-strategy
Nash equilibrium of Γ′.

Definition 3.6. A team max-min equilibrium (TME) of an ATG Γ is a behavioral max-min strategy of Γ′.

The TMECor value and TME value are defined analogous to the Nash value and behavioral max-min value.
As discussed before, behavioral max-min strategies in Γ′ are not equilibria in Γ′, so one may wonder about
the name “team max-min equilibrium”. However, there is a sense in which TMEs are equilibria: von Stengel
and Koller (1997) showed that, at least in the case where |▽▽▽| = 1, the TMEs are precisely the Nash equilibria
of the team in Γ that maximize the utility of team ▽▽▽.

An example adversarial team game in which the difference between TME and TMECor is relevant can be
found in Figure 1. The coordinator game is constructed simply by erasing the player labels, creating a
two-player zero-sum game. This game is a simple signaling game: nature selects a bit, which is privately
revealed to P1. P1 then communicates a single bit, which is publicly revealed. Then P2 and P3 both attempt
to guess nature’s selected bit, and ▽▽▽wins if and only if P2’s guess is correct. Therefore, the goal of P1 and
P2 is for P1 to “securely” communicate the bit to P2 without also revealing it to P3. With a behavioral
profile, this is impossible, since P1 and P2 cannot correlate their strategies; therefore, the TME value is
−1/2. However, if P1 and P2 are allowed to correlate their strategies, they can do the following: jointly flip
a coin. If that coin landed heads, P1 communicates the true bit, and P2 plays what P1 communicates. If
that coin landed tails, P1 communicates the opposite of the true bit, and P2 plays the opposite of what P1
communicates. In this way, P2 will always play the true bit, but P3 (who does not know the outcome of the
correlating coinflip) does not learn any information. Therefore, the value of this strategy for ▽▽▽is 0 (since P2
wins half the time by randomly guessing the bit).
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Adversarial Team Games Imperfect-Recall Games
Team ▽▽▽▽▽▽ Player ▲▼

Correlated team strategy Mixed strategy
Uncorrelated team strategy Behavioral strategy

TMECor Mixed-strategy Nash equilibrium
TME Behavioral max-min strategy

Table 2: Translation table between terms commonly employed in the adversarial team games
and two-player imperfect recall games. The translation happens through the introduction of
coordinator games (Definition 3.4).
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Figure 3: An example of team game (a) (using the same notation as Figure 1) and its
corresponding connectivity graph for player ▲ (b). Nodes in the two figures correspond in
position.

3.3 Beliefs and Observations
The main purpose of this section is to formally define beliefs, which are sets of nodes B ⊆ H derived from
information sets Ii of player i ∈ {▲,▼}. Informally, beliefs are the “information sets” that player i would
have if she could not distinguish nodes that cannot be distinguished using information from a later stage.
This notion is formalized by putting in the same belief any two nodes that have descendent nodes in the
same information set (even if they belong to different information sets). Similarly to information sets:

1. nodes in beliefs would be indistinguishable to i,

2. one action is chosen at each belief, and then this action is followed in all nodes in the belief, and

3. if the player knows that the current node of the game h lies in a set H of candidates, and the player
observes that her current belief is B, then the set of candidates can be refined to B ∩H (i.e. similarly
to information sets, beliefs correspond to observations over the state of the game).

Crucially, beliefs can be organized in the tree-like structure needed by algorithms finding Nash equilibria in
two-player zero-sum games, as we will see in Sections 3.3.1 and 3.3.3. This is thanks to the guarantee that
once a group of nodes is split among two different distinguishable beliefs, then any group of descendent nodes
from one belief will be distinguishable from any group of descendants from the other.

In the following, we formalize the notion of beliefs and observations. We consider a two-player zero-sum game
with imperfect recall Γ.
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Connectivity graph. We say that two nodes h and h′ are unforgettably distinguished by i if they do not
belong to the same infoset and no pair of children of those two nodes belong to the same infoset, i.e. i will
never be in an information set where these two ancestors are both possible. This condition guarantees that if
the set of candidates is H = {h, h′}, then the player is able to discern h from h′ and will never forget which
of the two nodes has been reached in the next steps of the game.15

For the purpose of our definitions, we are concerned with pair of nodes that are not distinguishable. This can
be represented through a connectivity graph over H as follows.

Definition 3.7 (Connectivity graph). The connectivity graph Gi = (H, Ei) for player i ∈ {▲,▼} is the graph
with nodes H and edges Ei, where (h, h′) ∈ Ei if h and h′ are at the same depth in Γ and there exists I ∈ Ii

such that h ⪯ I and h′ ⪯ I.

Consider Figure 3b as an example of connectivity graph for a game. Note the blue edges, which correspond
to connections due to infosets, and the black edge c− d due to g, h belonging to the same infoset.

Beliefs. Consider now a set H of nodes such that the induced subgraph Gi[H] is connected. Player i has
no way of distinguishing any subset of H from the others, because any node cannot be distinguished from its
neighbors. Beliefs are defined as these sets of indistinguishable nodes.16

Definition 3.8 (Belief). A set of nodes B ⊆ H is a belief for player i if the induced subgraph Gi[B] is
connected.

We remark that the timeablility property assumed on Γ implies that any node belonging to the same belief
has the same depth. Notice that a direct consequence of the definition of beliefs is that {∅} and {z} for
z ∈ Z are singleton beliefs for both teams.

Observations. Consider instead a set H of nodes such that the induced subgraph Gi[B] has different
connected components. In this case, player i can distinguish those components one from the other, thus
partitioning H into multiple beliefs. Intuitively, the unforgettable information is enough to distinguish every
node in a component from any node in other components. The player can, therefore, exclude nodes from
components that are distinguishable from the current reached node. We say that upon reaching a node h
among possible candidates H, player i observes belief B ⊆ H, meaning that player i uses the newly acquired
unforgettable information acquired in h to refine its imperfect information from H to B. We formalize this
notion of observation through the function SplitBeliefi:17

Definition 3.9 (Observation). The observation for player i ∈ {▲,▼} when reaching node h among a set H
of candidate nodes is:

SplitBeliefi(H, h) := the connected component of Gi[H] containing h.

The set of all possible observations given a set of candidates is denoted18 by

BH := {SplitBeliefi(H, h) : h ∈ H}.

An example of observation can be given by considering the team game depicted in Figure 3 and a candidate
set H = {b, c, e}. This candidate set is possible when player ▲ plays a strategy where player 1 plays a mixed

15h, h′ being distinguishable implies that in the corresponding team game any team member can recall whether h or h′ was
reached upon reaching h or h′.

16From a team game perspective, beliefs are sets of nodes with the guarantee that once reached all team members know that
any node H \ B is not reached, i.e. it is team-common knowledge that the game reached a node in B.

17In team games, the belief returned by SplitBeliefi is the team-common knowledge update happening when reaching h
among a set of candidates H.

18We remark that the belief-based constructions employed by the paper would also work when allowing SplitBeliefi to return
any superset of connected components. For example, in the framework of factored-observation games (Kovař́ık et al., 2022),
it is valid to define SplitBeliefi using the explicitly-given public observations. However, since the efficiency of the proposed
algorithms depends on the size of the beliefs employed, we opt not to allow, by definition, the use of beliefs larger than needed.
As we show in Section 3.3.2, any reduction in the size of the beliefs in a game brings exponential benefits in the size of the belief
game obtained.

26



strategy excluding d from its support. This, in turn, implies that player 2, at the next step, knows that
the reached node h in the game is in H. Moreover, player 2 observes her current information set I = b, c
if h ∈ {b, c} of I = {d, e} if h ∈ {d, e}. I can be used to further refine H as long as the information used
will be known at player 1 next. This is formalized in SplitBeliefi(H, b) = SplitBeliefi(H, c) = {b, c}
and SplitBeliefi(H, e) = {e}, which intuitively correspond to the fact that given those candidates, ▲
unforgettably distinguishes b and c from e. From the equivalent team game perspective: player 2 is active
and can check her current infoset to distinguish the two beliefs; player 1 has stopped playing and therefore it
is not relevant in terms of team knowledge; player 3 either will not play or will know that the current node
was c once the game reached g, so she can safely assume that the game is in c. This means that every player
distinguishes e from b, c.

Team public states. We compare our notion of beliefs with public states, an alternative customarily used
in the related literature. A public state P for player i is a connected component of the connectivity graph Gi.
The set of all public states of i is denoted as Pi.

Public states identify sets of nodes that are distinguishable to a player without considering a possibly pruned
subgraph of Gi as instead done for team observations. Therefore, every belief is contained in a public state.
In Figure 3 we have that P▲ = {{a}, {b, c, d, e}, {g, h}, {f}, {i}} ∪ {{z} : z ∈ Z}.

Public states are the customarily adopted alternative to observations when partitioning a set H of candidates
in beliefs by splitting H in {H ∩ P : P ∈ Pi}. However, public states may return a coarser partition than
the one returned by observations, as the absence of specific nodes from H may disconnect components in G.
We will, therefore, use observations in place of public states whenever possible. An example illustrating the
difference between the two definitions is available in Section 3.7.1.

Prescriptions. Restricting the information available to player i to her beliefs also affects the set of actions
available. In fact, multiple infosets may intersect a given belief, and the player does not know in which infoset
she finds herself. Therefore, she does not know what actions are available to her.

We overcome this issue by associating to each belief B a set of meta-actions Ai(B) such that an action is
specified for each possible infoset that intersects the belief. We call such structured meta-actions prescriptions
and use a symbol a to indicate them. The concept is formally defined as follows.

Definition 3.10 (Prescription). Consider a belief B of a player i ∈ {▲,▼}. A prescription a is a selection of
one action at each infoset having a nonempty intersection with B:

a ∈ ×
I∈Ii[B]

A(I) where Ii[B] = {I ∈ Ii : I ∩B ̸= ∅}.

Given a prescription a for a belief B and an infoset I such that I ∩ B ̸= ∅, we denote as a[I] the action
relative to infoset I which is specified by prescription a. Note that we have empty prescriptions at beliefs
containing no active nodes for a player.

As we will see in the next section, our equivalent belief game introduces one perfect-recall player per team,
with information sets associated with beliefs corresponding to the perfect-recall part of the information
available to this unique player. Prescriptions will allow this player to have an identical expressive power
in terms of actions without accessing the exact information set of the player, which is her imperfect-recall
information. Moreover, specifying a prescription at each reached belief for i incrementally defines a pure
strategy of player i. This allows us to consider a reduced set of candidate nodes H for the reached node
h from which the belief is observed, as a non-played action implies that all the descendant nodes are not
reached and, therefore, excluded from the candidates.

For example, consider a 3-player poker instance where two players collude to form a team. At any time of
the game, we can consider the point of view of a team coordinator, who acts as the single imperfect recall
player. We can imagine this coordinator as sitting at the same table as the players, and therefore, she cannot
access the private cards given to the players but can access the same public information as the players, that
is, the bet, fold, and check actions of the players. Her belief at any point regards the private cards that each

27



team member has. At the start of the game, this belief is uniform over all pairs of cards, as no information
regarding these cards is available from an external point of view. The coordinator emits prescriptions for the
players to follow as the game progresses. Since the coordinator does not know the card held by a player,
she has to prescribe an action for each possible card the current player may hold. The player receives this
prescription and follows the part of it that matches the private card. By observing the action played by the
player, the coordinator can exclude from her belief the cards for which she prescribed different actions. While
there are no means of communicating prescriptions during play at the poker table, this mechanism can be
implemented ex ante; that is, each team of players jointly samples a pure strategy of this coordinator before
the start of the game, and each member simulates the coordinator locally.

Information complexity. We quantify the number of information sets reaching a belief through the
notion of information complexity k. This quantity will allow us to bound the size of the belief games in
Sections 3.3.2 and 3.5.1.

We first characterize the notion of remembered information sets and the set of last-infosets at a node.
Intuitively, an infoset J remembers another infoset I if reaching a node in J implies traversing a node in
I and picking a specific action. Therefore, knowing to be at a node in J allows the player to recall having
traversed I and have played action a there. The last-infosets of player i at h are the information sets traversed
by h and not remembered by any following information set of the player up to h.19 This set quantifies the
knowledge lost by the player at a node due to imperfect recall.

Definition 3.11. An infoset J remembers another infoset I if there exists an action a ∈ A(I) such that, for
every h ∈ J , we have h′a ⪯ h for some h′ ∈ I.

Definition 3.12. The set of last-infosets at node h for player i is the set of infosets I ∈ Ii such that I ⪯ h
and there is no other infoset J ∈ Ii such that J ⪯ h and J remembers I.

We will use LIi(h) to denote the set of last-infosets at h for player i. Note that if h ∈ Hi then Ih ∈ LIi(h).

Now define the information complexity k of a two-player game Γ as follows.

k = max
i∈{▲,▼},

P ∈Pi

∣∣∣∣∣ ⋃
h∈P

LIi(h)
∣∣∣∣∣

Intuitively, k is a representation of how much information can be worst-case forgotten by player i. In the
team game interpretation, k is a representation of how asymmetric the information is among team members.
Note that k = 1 if and only if both players have perfect recall.

The information complexity characterizes both the number of beliefs in a public state P , and the number of
prescriptions that are available at such beliefs. In fact, the actions played at information sets in

⋃
h∈P LIi(h)

determine which nodes in P are reached (that is, a belief B ⊆ P ).

As an example, consider the game from Figure 3 and the public state P = {g, h}. We have that the strategy
played at ⋃

h∈{g,h}

LIi(h) = {Ia, Ic.Ig} ∪ {Ia, Id, Ih} = {Ia, Ic, Id, Ig}

is enough to characterize a belief B ∈ P and a prescription at that belief. In fact, the action at Ia decides
whether c and d are reached, the actions at Ic (respectively Id) decide whether g (respectively h) is reached,
and the action at Ig = Ih is the prescription.

It is instructive to understand how k behaves in a simple game. Suppose that Γ is a team game such that
there are n players on each team, each player is assigned one of t “private types” (in poker, these are the
private hands) and all other information in the game is common knowledge. Then at each public state P ∈ Pi,
there are at most t last-infosets per player, so k = nt.

19From the perspective of an adversarial team game, the last-infosets at a node for team t ∈ { ▽▽▽

,▽▽▽} are the most recent
infosets of each player in t, minus the infosets of players that are implied by other players’ infosets.
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Algorithm MakeBeliefGame: Belief game construction
1: procedure MakeNode▲(h, B▲, B▼, σ̃▲, σ̃▼)
2: create node h̃ ∈ H̃▲

3: add h̃ to infoset labeled (σ̃▲, B▲)
4: for each prescription a▲ ∈ A▲(B▲) do
5: h̃a▲ ←MakeNode▼(h, B▲, B▼, σ̃▲, σ̃▼, a▲)
6: return h̃
7: procedure MakeNode▼(h, B▲, B▼, σ̃▲, σ̃▼, a▲)
8: create node h̃a▲ ∈ H̃▼

9: add h̃a▲ to infoset labeled (σ̃▼, B▼)
10: for each prescription a▼ ∈ A▼(B▼) do
11: h̃a▲a▼ ←MakeNodeC(h, B▲, B▼, σ̃▲, σ̃▼,a▲,a▼)
12: return h̃a▲

13: procedure MakeNodeC(h, B▲, B▼, σ̃▲, σ̃▼, a▲, a▼)
14: if h is terminal node then
15: create new terminal node h̃a▲a▼ ∈ Z̃
16: ui(h̃a▲a▼)← ui(h) for each player i
17: p[h̃a▲a▼]← p[h]
18: return h̃a▲a▼

19: create new chance node h̃a▲a▼ ∈ HC
20: if h is a chance node then S ← {ha : a ∈ A(h)}
21: else S ← {hai[Ih]} where h ∈ Hi

22: for each node ha ∈ S do
23: B′

i ← SplitBeliefi(Biai, ha) for each player i
24: h̃a▲a▼a←MakeNode▲(ha, B▲

′, B▼
′, σ̃▲ + (σ̃▲, a▲), σ̃▼ + (σ̃▼, a▼))

25: return h̃a▲a▼

3.3.1 Belief Game Construction
We now introduce an algorithm that explicitly constructs a belief game given any two-player game. We will
use Γ̃ to denote the belief game and distinguish components of the original game Γ from components of the
belief game by writing tildes: for example, a generic history is h̃ ∈ H̃, a generic information set is Ĩi ∈ Ĩi,
and so on.

Here, for cleanliness, we will describe the evolution of the belief game as a game of simultaneous moves.
Algorithm MakeBeliefGame describes the procedure that constructs an extensive-form game (without si-
multaneous moves) that is equivalent to it.20 In particular, MakeNode▲(∅, {∅}, {∅},∅,∅) constructs the
whole belief game.

A node h̃ ∈ H̃ in the belief game is identified by a tuple (h, B▲, B▼) such that h ∈ B▲ ∩B▼, where h ∈ H is
the corresponding node in the original game describing the underlying state of the game, B▲, B▼ are the
current beliefs of ▲ and ▼ respectively. At h̃, each player i ∈ {▲,▼} has a (possibly empty) collection of
infosets, I[Bi], at which it needs to prescribe an action. The two players simultaneously submit actions
ai ∈ Ai(Bi). The next belief game node is (ha, B′

▲, B′
▼), where:

(i) The action a is the one taken by the player at h: if h is chance node, then a is sampled from chance’s
action distribution at h; otherwise, a = ai[Ih].

(ii) the beliefs evolve as follows. For each player i, the set of candidate next histories in the original game
20We implement simultaneous actions by representing each step in the game as a sequence of one node per player ▲, ▼, C

where everyone acts; the effects of the actions taken are applied at the end.
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compatible with i’s current belief Bi and its prescription ai is given by

Biai := {ha : h ∈ B▲ ∩Hi, a = a[Ih]}︸ ︷︷ ︸
when player i acts,

it must be according to the prescription

∪ {ha : h ∈ B▲ \ Hi, a ∈ A(h)}︸ ︷︷ ︸
when player i does not act,

i does not know what action is taken

,

Next, player i observes the information revealed by the next history ha, thus arriving at belief

B̃′
i := SplitBeliefi(Biai, ha).

We remark some characteristics of Γ̃ := MakeBeliefGame(Γ).

• Multiple different tree nodes h̃ can correspond to the same (h, B▲, B▼) tuple. In particular, for each
terminal node z ∈ Z there is only one state (z, {z}, {z}).

• Information sets in Γ̃ are associated to sequences of beliefs and prescriptions. In particular, such
infosets can be described by tuples of the form (B1

i = {∅},a1
i , B2

i ,a2
i , . . . , BL

i ), where aℓ
i ∈ A(Bℓ

i ) and
Bℓ+1

i = SplitBeliefi(Bℓ
ia

ℓ
i , h) for some h ∈ Bℓ

ia
ℓ
i .

• By construction of MakeBeliefGame we have that Γ̃ is a perfect-recall game. In fact, nodes with different
sequences are associated to different information sets thanks to including sequences in each information
set’s label;

• When h is terminal, the belief game does not stop until both players have observed the trivial belief
{h} at h and then submitted their empty prescriptions at that belief. This is for notational convenience:
it ensures that terminal sequences for a player i will always end with singleton beliefs, which will make
the later analysis cleaner.

• Modulo trivial reformulations (namely, the insertion of nodes with a single child), if Γ is perfect recall
then Γ̃ is identical to Γ.

Given a pure strategy x̃i ∈ X̃i, we say that x̃i plays to a belief Bi of player i if x̃i plays to some node
corresponding to (h, Bi, B−i).

Theorem 3.13. Let Γ be any two-player imperfect-recall extensive-form game, and Γ̃ be the belief
game constructed by MakeBeliefGame. Γ and Γ̃ are strategically equivalent.

The proof can be found in the full paper (Carminati et al., 2024a).

3.3.2 Worst-Case Dimension of the Belief Game
The per-iteration time complexity of CFR depends linearly on the size of the game on which the algorithm
is applied. Thus, it is critical for complexity analysis to bound the size of the belief game produced by
MakeBeliefGame.

Lower Bound. We first present a lower bound of the worst-case size of the belief game, i.e. a worst-case
instance of game whose belief game has a large number of histories.

Theorem 3.14. There exists a game Γ with depth d, information complexity k and maximum branching
factor at a node b such that the number of nodes in the belief game Γ̃ is |H̃| ≥ b2k(d−4).
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Upper Bound. We now present an upper bound on the number of histories of the belief game.

Theorem 3.15. Let Γ be a game with depth d, information complexity k and maximum branching
factor at a node b. The number of nodes in the belief game Γ̃ is |H̃| ≤ b2kd+d.

Discussion. The bounds presented in this section highlight the main computational limitation of Al-
gorithm MakeBeliefGame, the explicit dependence on depth introduced by explicitly using sequences to
distinguish information sets in the belief game.

We remark that we can replace k here with the maximum number of infosets (not the last-infosets) in any
public state. We opted not to introduce two different notions of information complexity to have bounds
comparable with the TB-DAG ones in Section 3.5.1. We will explore the effects of introducing the different
definitions of k in Section 3.7.3.

3.3.3 Regret Minimization on Team Games
This section shows how to find a mixed Nash equilibrium in a generic two-player zero-sum game with imperfect
recall Γ by applying CFR on the belief game Γ̃ obtained by running Algorithm MakeBeliefGame on Γ.

Let X̃ and Ỹ be the realization-form mixed strategy spaces for ▲ and ▼ in Γ̃ derived from the sequence-form
representation as in Section 2.2.3. Specifically, vectors x̃ ∈ X̃ are indexed by terminal sequences for ▲ in
Γ̃ (similarly for ▼). Such a sequence σ can be identified by a list of beliefs and prescriptions, ending in a
singleton belief {z} for terminal node z ∈ Z. For any terminal node z, let Σz

▲ be the set of terminal sequences
for ▲ that end at belief {z}. Then computing a Nash equilibrium in Γ̃ (and hence a mixed Nash in Γ) can be
done by solving the max-min problem

max
x̃∈X̃

min
ỹ∈Ỹ

∑
z∈Z

u(z)
∑

σ̃▲∈Σz
▲

x̃[σ̃▲]
∑

σ̃▼∈Σz
▼

ỹ[σ̃▼]. (2)

This is equivalent to the max-min problem for the coordinator game by setting x[z] :=
∑

σ̃▲∈Σz
▲
x̃[σ̃▲] (and

similar for y). That is, from an optimization perspective, what has happened is that we have constructed
sets X̃ and Ỹ that are described by linear constraints, just like the sequence form, and project onto X and Y
respectively, allowing the reformulation and equivalence of problems.

We now analyze the time complexity and regret of running CFR on Γ̃. Fix a player, say, ▲. (The same
analysis will apply to ▼.) First, recall from Section 2.2.3 that, in a decision problem, a set P of ▲-decision
points is called playable if there exists a pure strategy of ▲ that plays to all the decision points in P . But the
size of any playable set P of ▲ is at most |H|. Further, the branching factor of Γ̃ is at most bk, where b is the
branching factor of Γ and k is the information complexity (see Section 3.3.2). Thus, applying multiplicative
weights (MWU) as the local regret minimizer at each decision point and using Proposition 2.3, we have:

Theorem 3.16. After T iterations of CFR on Γ̃ with MWU as the local regret minimizer, the average
strategy profile (x̄, ȳ) is an O(ϵ)-Nash equilibrium of Γ, where

ϵ = |H|
√

k log b

T
.

The per-iteration complexity is linear in the size of Γ̃.

While the regret above is polynomial in H, the per-iteration complexity depends on the size of Γ̃, which is
worst-case exponentially larger than Γ, as shown in Section 3.3.2.
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Algorithm DAG-Generic: Generic construction of a regret minimizer R on Q from a regret minimizer R̂ on
its tree form Q̂.

1: procedure NextStrategy
2: x̂t ← R̂.NextStrategy()
3: return Dx̂t

4: procedure ObserveUtility(ut)
5: R̂.ObserveUtility(D⊤ut)

Algorithm DAG-CFR: Counterfactual regret minimization on DAG-form decision problems Q. For each decision
point j, Rj is a regret minimizer on ∆(A(j))).

1: procedure NextStrategy
2: xt[∅]← 1
3: for each decision point j, in top-down order do
4: rt

j ← Rj .NextStrategy()
5: xt[j∗]←

∑
p∈Pj

xt[p]rt
j

6: return xt

7: procedure ObserveUtility(ut)
8: vt ← ut

9: for each decision point j, in bottom-up order do
10: Rj .ObserveUtility(vt[j∗])
11: for p ∈ Pj do vt[p]← vt[p] +

〈
rt

j ,vt[j∗]
〉

12: t← t + 1

3.4 DAG Decision Problems
In this section, we will develop a general theory of DAG-form decision problems, and regret minimization
on them, analogous to the tree-form theory in Section 2.2.3. Although our main interest in DAG-form
decision-making is its application to two-player imperfect-recall games (which we will develop in Section 3.5),
the observations made in this section also have general applicability beyond this setting. For example, since
the publications of earlier versions of the present paper, DAG-form decision-making has been applied toward
the efficient computation of many other solution concepts, including linear correlated equilibria and optimal
extensive-form correlated equilibria (Zhang and Sandholm, 2022a; Zhang et al., 2022b, 2023a, 2024a,d).

As one may expect, DAG-form decision problems are identical to tree-form decision problems except that the
graph of nodes is allowed to be a DAG, albeit with some restrictions.

Definition 3.17. A DAG-form decision problem is a DAG with a unique source (root node) ∅, wherein each
node is either a decision point (j ∈ J ) or an observation point (s ∈ S)21, with the following properties:

1. Observation points other than the root have exactly one incoming edge.

2. For any two paths p1 and p2 from the root that end at the same node, the last node in common between
p1 and p2 is a decision point.

As with tree-form decision problems, we will also assume (WLOG) that decision and observation points
alternate along every path, and that both the root node and all terminal nodes are observation points. A
pure strategy is once again an assignment of one action to each decision point. The DAG form of a pure
strategy is the vector x ∈ {0, 1}S , where x[s] = 1 if there is some ∅→ s path along which the player plays
all actions. A mixed strategy x ∈ Q is a convex combination of pure strategies. Since decision points can
now have multiple parents, we will use Pj to denote the set of parents of a decision point j.

21For most of this thesis, observation points are denoted Σ; however, here we will need to distinguish between observation
points s ∈ S and sequences in the original game. We hence choose different notation.
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Like tree-form decision problems, the mixed strategy set in a DAG-form decision problem has a convenient
representation using linear constraints, namely:

x[∅] = 1∑
p∈Pj

x[p] =
∑

a∈A(j)

x[ja] for all j ∈ J . (3)

DAG-form decision problems and tree-form decision problems are closely related. Of course, all tree-form
decision problems are DAG-form decision problems. Conversely, any DAG-form decision problem can be
thought of as a “compressed” representation of the tree-form decision problem created by separating out all
the different paths through the DAG. While this tree will generally be exponentially larger than the DAG,
we will find it useful to compare the DAG and tree representations.

We now formulate a general theory of regret minimization for DAG-form decision problems. We will use
hats (Q̂, Ĵ , Ŝ, x̂) to denote components of the tree form of a generic DAG-form regret minimizer. For each
tree-form observation point s ∈ Ŝ let δ(s) ∈ S be the corresponding observation point in S. Note that, by
construction, δ is surjective but not injective unless the DAG happens to be a tree.

We now show how tree-form strategies and utilities correspond to DAG-form strategies and utilities. Concretely,
we define a matrix D ∈ RS×Ŝ by Dx̂[s] =

∑
ŝ:δ(ŝ)=s x̂[ŝ] for all x̂ ∈ RŜ . This is the matrix of the linear map

that transforms tree-form strategies to their corresponding DAG-form strategies. That is, D : X̂ → X is a
bijection.

Dually, for DAG-form utility vectors u ∈ RS , the vector D⊤u ∈ RŜ is a utility vector on the tree form, with
the property that

〈
D⊤u, x̂

〉
= ⟨u,Dx̂⟩ by definition of the inner product. That is, the DAG-form strategy

Dx̂ achieves the same utility against DAG-form utility vector u as the tree-form strategy x̂ achieves against
the utility D⊤û.

The relationship between trees and DAGs allows us to use any regret minimizer on Q̂ to construct a regret
minimizer with the same guarantee on Q. We do this in Algorithm DAG-Generic.

Proposition 3.18. Let R and R̂ be as in Algorithm DAG-Generic. Then the regret of R with utility
sequence u1, . . . ,uT is equal to the regret of R̂ with utility sequence D⊤u1, . . . ,D⊤uT .

Applying the transformation DAG-Generic with CFR as the tree-form regret minimizer R̂, we arrive at a DAG
form of CFR, which can be simulated efficiently: Algorithm DAG-CFR. One can think of DAG-CFR as a more
efficient implementation of CFR when the decision tree happens to have a DAG structure. Of course, the
regret bound O(|S|

√
T ) is only a worst-case bound; in special cases (such as Theorem 3.16), CFR does much

better than its worst case, and therefore so will DAG-CFR.

Call a utility vector û consistent if it is in the image of D⊤. That is (expanding the definition of D⊤), û ∈ RÔ

is consistent if û[ŝ] = û[ŝ′] if δ(ŝ) = δ(ŝ′). In essence, a DAG-form regret minimizer is able to “simulate” a
tree-form regret minimizer so long as the tree-form regret minimizer’s utilities are always consistent. We now
formalize this idea.

Theorem 3.19 (DAG regret minimization via CFR). DAG-CFR produces the same iterates
as DAG-Generic with CFR as R̂. Therefore, in particular, the regret of DAG-CFR with util-
ity sequence u1, . . . ,uT is the same as that of CFR on the tree form with utility sequence
û1 := D⊤u1, . . . , ût := D⊤uT . Moreover, the per-iteration runtime of DAG-CFR is linear in the
number of edges in the DAG. In particular, taking any reasonably efficient regret minimizer over
simplices, the regret of DAG-CFR after T iterations is at most O(|S|

√
T ).
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Algorithm ConstructTB-DAG: Constructing the TB-DAG. Inputs: imperfect-recall game Γ, player i

1: procedure MakeDecisionPoint(B) ▷ B ⊆ H is a belief
2: if a decision point j with belief B already exists then return j

3: if B = {z} for z ∈ Z then return new terminal node with belief {z}
4: j ← new decision point with belief B
5: for each prescription a ∈ Ai(B) do
6: add edge j →MakeObservationPoint(Ba)
7: return j

8: procedure MakeObservationPoint(H)
9: s← new observation point

10: for each B ∈ SplitBeliefi(H) do
11: add edge s→MakeDecisionPoint(B)
12: return s

3.5 DAG Decision Problems in Team Games
In Section 3.3.3, it emerged that applying the CFR procedure to the belief game produced by MakeBeliefGame
suffers from the size of the game to solve, which may grow exponentially fast as shown in Section 3.3.2. In
this section, we show how DAG decision problems can greatly reduce the inefficiencies caused by the previous
construction.

The main observation is that MakeBeliefGame enforces perfect recallness of the belief game by including
the players’ sequences in the infoset definition. On the other hand, the strategic aspect of the game is
governed solely by the nodes contained in beliefs. Once the set of possible nodes is fixed, the exact sequence
of prescriptions and observations is not relevant, as the game will evolve identically from that point onwards.
This observation leads to considering a DAG structure for the decision problems, where decision nodes are
identified by beliefs.

The Nash equilibrium problem in Γ̃, namely (2), indeed guarantees that both players’ utility vectors will
be consistent with respect to these DAG-form decision problems. We will call the resulting DAG decision
problems the team belief DAGs (TB-DAGs)22. Therefore, using DAG-CFR as the regret minimizer for both
players, we recover the regret guarantee of Theorem 3.16 with per-iteration complexity proportional to the
total size of both DAGs.

However, this proposed algorithm still depends on the size of Γ̃, because, naively, to construct the DAG
representations, one first constructs the augmented game Γ̃, and only then does the merging of decision points
to create the DAGs. We therefore describe an algorithm ConstructTB-DAG that recursively constructs the
team belief DAGs directly from the original game Γ, thus bypassing the construction of Γ̃. Therefore, we have
the following result. For each player i ∈ {▲,▼}, let Ei be the number of edges in the TB-DAG of player i.

Theorem 3.20 (TB-DAG and CFR). Suppose that both players run the algorithm ConstructTB-DAG
to construct their strategy spaces X̃ , Ỹ, and then run DAG-CFR. Then their average strategy profile
converges at the rate shown in Theorem 3.16, and the per-iteration runtime complexity is O(E▲ + E▼).

22We keep the name team belief DAG for continuity with previous versions of the work, even though it applies equally well in
the team and imperfect recall settings.
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3.5.1 Size Analysis of the TB-DAG
The per-iteration runtime above depends on the number of edges in the TB-DAGs, so it is important to
bound this number. We will do so now. Here, we use the same notation as in Section 3.3.2.

Theorem 3.21. For each player i, we have Ei ≤ |H|(b + 1)k+1.

Thus, from Theorem 3.20 and Theorem 3.21, it follows that:

Theorem 3.22 (Main theorem). Any given imperfect-recall game Γ can be solved by constructing
the TB-DAGs using ConstructTB-DAG and running DAG-CFR. After T iterations, the average strategy
profile will be an O(ϵ)-Nash equilibrium where ϵ is as in Theorem 3.16. The per-iteration complexity
is O(|H|(b + 1)k+1).

Before proceeding, it is instructive to briefly compare Theorem 3.22 to Theorem 3.15. The latter result gives
a per-iteration complexity that is O(bd(2k+1)). Thus, Theorem 3.22 is strictly superior: for Theorem 3.15 to
be superior, we would need to have bd(2k+1) < |H|(b + 1)k+1, which is impossible for d ≥ 1, k ≥ 1, b ≥ 2. We
give a more detailed comparison between the two bounds in Section 3.7.3.

3.5.2 Fixed-Parameter Hardness
Given the above result, one may ask whether the b can be removed more generally. It turns out that it cannot.
Before proceeding, we need to introduce some basic concepts surrounding fixed-parameter tractability.

Definition 3.23. A problem is fixed-parameter tractable with respect to a parameter k if it admits an
algorithm whose runtime on inputs of length N is f(k)poly(N), for some arbitrary function f .

The k-CLIQUE problem is to, given a graph Γ and an integer k, decide where Γ has a k-clique. The
computational assumption FPT ̸= W[1] states that k-CLIQUE is not fixed-parameter tractable. It is implied
by the exponential time hypothesis (Chen et al., 2005).

Theorem 3.24. Assuming FPT ≠ W[1], there is no algorithm for computing the mixed Nash value
of a one-player game of imperfect recall whose runtime has the form f(k)poly(|H|) where f is an
arbitrary function.

Thus, it is impossible to replace the b in Theorem 3.22 with any absolute constant.

3.5.3 Branching Factor Reduction
Despite the worst-case hardness of removing the b in Theorem 3.22, it turns out that, for a natural class of
games, we can remove b. In this subsection we will discuss games with action recall, and prove that in such
games, it is without loss of generality to assume that the branching factor is 2. Intuitively, a player i has
action recall if it remembers the full sequence of actions she has taken in the past (including the timesteps at
which such actions were taken). More formally:

Definition 3.25. At a node h ∈ H, let (a1, . . . , aL) ∈ AL be the list of actions taken on the ∅ → h path.
Define the action sequence of player i as the sequence (a′

1, . . . , a′
L) ∈ (A ⊔ {⊥})L where a′

ℓ = aℓ if action aℓ

was taken by player i, and a′
ℓ = ⊥ otherwise. We say that player i has action recall if, for every infoset I of

player i, every node in I shares the same action sequence.

Theorem 3.26. Given a two-player imperfect-recall game Γ where both players have perfect action
recall, there exists another strategically-equivalent game Γ′ such that the branching factor of Γ′ is at
most 2 at each h ∈ H▲ ∪H▼, the parameter k in Γ′ is the same as it in Γ, and the size of the game
has increased by a factor of O(log |A|).
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Team vs Player Team vs Team
TMECor NP-complete (Koller and Megiddo, 1992) ∆P

2 -complete (This paper, Theorems 3.31 and 3.32)
TME NP-complete (Koller and Megiddo, 1992) ΣP

2 -complete (This paper, Theorems 3.29 and 3.30)

Table 4: Summary of most of the complexity results shown in Section 3.6.

Corollary 3.27. In games where both players have action recall, Theorem 3.22 applies with the
per-iteration runtime replaced with O(3k|H| log |A|).

3.6 Complexity of Adversarial Team Games
Here, we state and prove several results about the complexity of finding various equilibria in timeable
two-player zero-sum games of imperfect recall.

In all cases, the goal is to solve the following promise problem: given game Γ, threshold value v, and error
ϵ > 0 (where all the numbers are rational), determine whether the (mixed or behavioral) value of the game is
≥ v, or < v − ϵ. The allowance of an exponentially-small error is to circumvent issues of bit complexity that
arise due to the fact that exact behavioral max-min strategies may not have rational coefficients (Koller and
Megiddo, 1992). Throughout this section, it will often be convenient to formulate the hardness gadgets in
terms of adversarial team games. We will thus freely utilize the analogy between adversarial team games
and coordinator games. For mixed Nash and behavioral Nash respectively, we will refer to the problems as
Mixed and Behavioral.

Although we do not explicitly state it in the theorem statements, all the hardness results are proven by
constructing adversarial team games in which both teams have a constant number of players.

Theorem 3.28 (Koller and Megiddo, 1992; Chu and Halpern, 2001; von Stengel and Forges, 2008).
Finding the optimal strategy in a one-player, timeable game of imperfect recall is NP-hard.

The above result also shows, by the PCP theorem (H̊astad, 2001), that there exists an absolute constant ϵ
such that computing the optimal value in a team game with no adversary to accuracy ϵ is NP-hard. Finally,
the information complexity of the game used in the above construction is23 k = n, and the branching factor
can be made an absolute constant by splitting the root chance node into Θ(log m) layers. Finally, the size of
the game is O(mn). Thus, Theorem 3.22 implies a SAT-solving algorithm whose runtime is 2O(n). Thus, in
particular, the appearance of k in the exponent in Theorem 3.22 is unavoidable: if the k were replaced by
any o(k) term, then SAT would have an 2o(n)-time algorithm, violating the commonly-believed exponential
time hypothesis.

23Here we use the ordering of the players: namely, we have k = n only because P1 plays before P2. If the order of the players
were flipped, we would instead have k = m.
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C D E

B

F G H

Figure 5: A game showing that public state-based approaches do not subsume inflation.

3.6.1 Behavioral Max-Min Strategies
We first show results for BehavioralMaxMin. In particular, we will show that it is ΣP

2 -complete, first by
showing inclusion and then constructing a gadget game to show completeness. (Recall that the inclusion will
require an ϵ-approximation because exact behavioral max-min strategies may contain irrational values.)

Theorem 3.29. BehavioralMaxMin is in ΣP
2 . If ▼ has perfect recall, it is in NP.

Theorem 3.30. BehavioralMaxMin is ΣP
2 -hard, even for team games with a constant number of

players and no chance.

3.6.2 Mixed Nash Equilibria
We now show results for MixedNash, namely, we will show that MixedNash is ∆P

2 -complete, again by
showing inclusion first and then completeness. Unlike for BehavioralMaxMin (Theorem 3.29), here we
will directly construct a separation oracle, and thus be able to recover algorithms for exact computation.

Theorem 3.31. MixedNash is in ∆P
2 , even for exact computation (ϵ = 0).

Theorem 3.32. MixedNash is ∆P
2 -hard, even for team games with a constant number of players

and no chance.

3.7 Discussion
In the following section we discuss important details that may help the interested reader in clarifying some
technical aspects of our contributions.

3.7.1 Public States vs Observations
In this section, we discuss in depth the difference between public states and public observations. Intuitively,
the difference is that observations are localized to a particular node in the TB-DAG: if a fact is public to
the team conditional on the part of the team strategy that has been played to reach this point, then it is an
observation. On the other hand, public states only encode unconditionally public information. As we will see,
using observations is strictly preferable to public states from both conceptual and theoretical perspectives.

37



Comparision to using public states. We envision an alternative construction of the TB-DAG in which
the team coordinator observes only the public state containing the current node. That is, the definition of
SplitBelief is replaced by:

SplitBeliefpub
i (H, h) := H ∩ P where h ∈ P ∈ Pi.

and SplitBeliefpub
i (H) defined analogously. Then, in ConstructTB-DAG, we replace SplitBeliefi(H) with

SplitBeliefpub
i (H). We will call this new construction the public-state TB-DAG and spend the rest of this

subsection contrasting it with the (observation) TB-DAG constructed by ConstructTB-DAG.

Our first result is that the TB-DAG can never be too much larger than the public state TB-DAG:

Proposition 3.33. Let N and N ′ be the number of nodes in the TB-DAG and public state TB-DAG
respectively. Then N ≤ 2pN ′, where p is the largest size (in number of nodes) of any belief in the
public state TB-DAG.

Thus, using observations is never much worse than using public states.

Comparision to using inflated public states. Previous works (Zhang and Sandholm, 2022b; Carminati
et al., 2022) used public states and required to inflate the information partition of the team before the
new representation can be constructed. Complete inflation (Kaneko and Kline, 1995), which we simply call
inflation for short, is an algorithm that splits an infoset I into two infosets I = I1 ⊔ I2 if no pure strategy of
the team can simultaneously play to a node in I1 and a node in I2, and repeats this process until no more
such splits are possible. This preserves strategic equivalence. However, inflation can lead to the break-up of
public states, which, in turn, reduces the size of public state TB-DAG.

Indeed, consider the game in Figure 5. Due to the information sets marked in the last layer of the game tree,
the connectivity graph contains a path C—D—E—...—H. Therefore, {C, D, ..., H} form a public state. Also,
it is possible for the combinations CEG and DFH to be reached (if the player at the root plays left or right,
respectively). Therefore, CEG and DFH are beliefs in the public-state TB-DAG. In the observation TB-DAG,
consider, for example, what happens if the left action is played at the root so that C, E, and G are all reached.
Note that there are no edges connecting C, E, and G—the path connecting C to E in the connectivity graph
passes through D, which is not reached; therefore, C, E, and G are three different observations and hence
three different beliefs, resulting in an exponentially-smaller TB-DAG. Inflation would remove the nontrivial
information sets in the second black layer, which would ultimately have the same effect in this example as
using observations.

The number 3 is not special in this construction; it can be increased arbitrarily by simply increasing the
number of children of A and B. Therefore, in particular, one can construct a family of games in which
the public state TB-DAG (without inflation) has exponential size, while the (observation) TB-DAG has
polynomial size. This is why Zhang and Sandholm (2022b) and Carminati et al. (2022) insist that inflation
be done as a preprocessing step before beginning their constructions.

The use of observations, however, removes the need for this step:

Proposition 3.34. Given any team decision problem T , the TB-DAG of T is the same no matter
whether inflation is applied to T before the construction.

Although inflation can be performed efficiently, not requiring it as a preprocessing step simplifies the code
and makes for a conceptually cleaner construction. However, the benefits of observations go beyond making
inflation unnecessary. In fact, even with inflation, there are still cases in which using observations instead
represents an exponential improvement.
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Proposition 3.35. There exists a family of team decision problems in which the TB-DAG has
polynomial size, but the public state TB-DAG has exponential size, even if inflation is applied as a
preprocessing step before building the latter.

A practical experiment backs up these results. When C = 16, using observations generates a DAG with
around 1000 edges; using public states generates a DAG with 30 million edges.

3.7.2 Tree vs DAG Representation
Here we give an explicit example in which the TB-DAGs will be exponentially smaller than the game tree
generated by MakeBeliefGame. This construction would work for most nontrivial adversarial team games,
but for concreteness, consider the game Γ depicted in Figure 1. Call the leftmost terminal node in that
diagram z. Consider adding another copy of Γ rooted at node z, and then repeating this process until ℓ
copies of the game tree have been created, thus forming a game Γℓ. That is, Γℓ is the game in which Γ is
played repeatedly until ℓ repetitions have been reached, or the terminal node reached is not z.

Note that, when running MakeBeliefGame on Γ, multiple copies of node z will appear. Thus, the number of
nodes in the auxiliary game will be exponential in ℓ. However, in the TB-DAG, after the ith repetition of
the game finishes, the belief will always be {zi} (where zi is the copy of z in the ith repetition of the game).
Thus, the size of the TB-DAG will scale linearly with ℓ. Thus, as ℓ grows, the TB-DAG will be exponentially
smaller than the auxiliary game, and in particular the TB-DAG will have polynomial size while the auxiliary
game will have exponential size.

3.7.3 Definition of Information Complexity and Comparison of Bounds
We discuss the comparison between the bounds from Theorem 3.15 and Theorem 3.21 in more detail.

In Section 3.3, we defined the information complexity as the maximum number of last-infosets in any public
state. This definition was made with Theorem 3.22 in mind, because it is the correct parameterization for that
result. For Theorem 3.15, however, we could have used a tighter parameterization. In particular, we could
have defined a parameter κ as the number of infosets (not last-infosets) in any public state. Then O(b2κd+d)
would be a valid upper bound in Theorem 3.15. One might ask how this new upper bound compares to that
of Theorem 3.22. To this end, we now compare the two bounds.

Lemma 3.36. k ≤ κd.

Thus, the bound in Theorem 3.22 is at most

|H|(b + 1)k+1 ≤ |H|(b + 1)κd < |H|b2κd ≤ b2κd+d

where we use the bounds b ≥ 2 (which holds for every nontrivial game) and |H| ≤ bd. Thus, we conclude that
the bound in Theorem 3.22 is always strictly tighter than the bound in Theorem 3.15.

We also remark that in any case κ ≤ |H| is a loose bound that still ensures that the overall bound in
Theorem 3.16 is polynomial in |H|.
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3.7.4 Connection with Tree Decomposition
The public state TB-DAG can be viewed from the perspective of graphical models, specifically, using tree
decompositions. Here, we review tree decompositions and show the tree decomposition-based perspective of
the public-state TB-DAG.

Definition 3.37. Given a (simple) graph G = (V, E), a tree decomposition24 is a tree J , with the following
properties:

1. the nodes of J are subsets of V , called bags;

2. for each edge (u, v) ∈ E, there is a bag containing both u and v; and

3. for each vertex u ∈ V , the subset of nodes of J whose bags contain u is connected.

Consider an arbitrary set of the form

X = {x ∈ {0, 1}n : gk(x) = 0 ∀k ∈ [m]}

where the gks are arbitrary constraints. Each constraint gk has a scope Sk ⊆ [n] of variables on which it
depends. The dependency graph of X is the graph GX whose nodes are the integers 1, . . . , n, and where there
is an edge (i, j) if there is a constraint whose scope Sk contains both i and j. For a subset U ⊆ [n], a vector
x̃ ∈ {0, 1}U is locally feasible if x̃ = xH for some x ∈ X . We will use XU to denote the set of all locally
feasible vectors on U . Of course, X[n] = X .

The main result of interest to us is a corollary of the junction tree theorem (e.g., (Wainwright and Jordan,
2008)), which allows an arbitrary set co X to be described with a constraint system whose size is related to
the sizes of tree decompositions of GX .

Theorem 3.38 (Wainwright and Jordan, 2008). Let J be a tree decomposition of GX . Then x ∈ X if
and only if there are vectors λU ∈ ∆(XH) for each bag U of J , such that:

xU =
∑

x̃∈XU

λU [x̃] · x̃ ∀ bags U in J

∑
x̃∈XU

x̃U∩V =x̃∗

λU [x̃] =
∑

x̃∈XV

x̃U∩V =x̃∗

λV [x̃] ∀ edges (U, V ) of J and x̃∗ ∈ XU∩V

Intuitively, the first constraint says that every xU must be a convex combination of locally feasible x̃ ∈ XU .
This is of course a necessary condition. The second constraint says that marginal probabilities on edges (U, V )
must be consistent with each other. This is also clearly a necessary condition, so the difficulty of proving the
above result lies in showing that these two constraints are sufficient. We will not prove the result here, but
we will use it as a black box.

In this section, we will work with a representation slightly different from the realization form. For a player i
in a coordinator game Γ and a pure strategy of that player, the history form of the strategy as the vector
x ∈ {0, 1}H where x[h] = 1 if and only if the team plays all actions on the ∅ → h path. (Of course, the
realization form is just the subvector of x indexed by Z.) As usual we will use X for the set of pure strategies
in history form, and x = coX . The history form is the set of vectors x ∈ {0, 1}H satisfying the following
constraint system.

x[∅] = 1
x[ha] = x[h] if h /∈ Hi

x[h] =
∑

a∈A(h)

x[ha] if h ∈ Hi

x[ha]x[h′] = x[h′a]x[h] if h, h′ ∈ I ∈ Ii; a ∈ A(h)
24also known as a clique tree or junction tree
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Original game Γ Belief Game Γ̃ Team ▲’s DAG Team ▼’s DAG
Nodes Infosets Sequences Information Nodes Infosets Sequences Vertices Edges Vertices Edges

Γ |H| |I▲| |I▼| |Σ▲| |Σ▼| maxP |P | k |H̃| |Ĩ▲| |Ĩ▼| |Σ̃▲| |Σ̃▼| |J▲ ∪ S▲| |E▲| |J▼ ∪ S▼| |E▼|
3K3 {3} 151 24 12 48 24 6 6 2119 486 12 1062 24 487 918 37 36
3K4 {3} 601 32 16 64 32 12 8 45,049 4487 16 9800 32 2100 6711 49 48
3K6 {3} 3001 48 24 96 48 30 12 6,768,601 267,184 24 574,588 48 54,255 336,944 73 72
3K8 {3} 8401 64 32 128 64 56 16 617,929,873 13,194,749 32 27,978,704 64 1,783,926 15,564,765 97 96
3K12 {3} 33,001 96 48 192 96 132 24 — — — — — — — — —
4K5 {3,4} 7801 80 80 160 160 20 10 577,764,601 102,725 10,385 221,810 21,740 26,566 124,875 4621 15,415
4K5 {4} 7801 120 40 240 80 60 15 174,273,721 11,739,640 40 25,581,730 80 998,471 4,658,070 121 120
3L133 {3} 12,688 456 228 912 456 9 6 1,293,658 96,115 228 208,136 456 23,983 49,005 685 684
3L143 {3} 40,409 800 400 1600 800 16 8 52,745,745 2,625,209 400 5,736,592 800 139,964 417,027 1201 1200
3L151 {3} 19,981 1000 500 2000 1000 20 10 152,692,141 16,564,617 500 36,016,124 1000 150,707 496,196 1501 1500
3L153 {3} 98,606 1240 620 2480 1240 25 10 1,833,113,016 67,400,747 500 147,671,104 1240 855,397 3,486,091 1861 1860
3L223 {3} 15,659 1260 630 2884 1442 4 4 521,285 47,579 812 100,420 1624 32,750 45,913 2437 2436
3L523 {3} 1,299,005 99,168 49,584 246,304 123,152 4 4 178,141,285 19,499,329 73,568 40,224,140 147,136 2,911,352 4,183,685 220,705 220,704
4L133 {3,4} 159,001 1632 1632 3264 3264 9 6 985,916,371 475,081 135,322 1,011,500 292,400 79,351 158,058 75,157 155,475
3D3 {3} 27,622 1023 513 2046 1020 9 6 70,704,118 3,235,954 765 5,501,789 1272 91,858 215,967 1522 1521
3D4 {3} 524,225 10,924 5460 21,840 10,920 16 8 — — — — — 4,043,377 13,749,608 16,381 16,380
4D3 {2,4} 663,472 6144 6144 12,285 12,285 9 6 — — — — — 514,120 1,217,310 486,442 1,155,144
6D2 {2,4,6} 524,225 4096 4096 8190 8190 8 6 5,879,066,753 1,094,865 701,001 1,869,170 1,202,948 254,758 457,795 218,570 389,995
6D2 {4,6} 524,225 5704 2488 10,920 5460 16 8 4,992,649,921 15,032,900 33,905 25,363,692 57,194 991,861 2,029,546 46,236 60,717
6D2 {6} 524,225 6584 1608 12,922 3458 32 10 2,126,796,737 126,748,497 2532 208,964,598 4382 3,158,364 7,395,885 5551 5550

Table 6: Game sizes of the equivalent representations proposed in the paper (i.e. belief game
and TB-DAG) on several standard parametric benchmark team games. See Section 3.8 for
a description of the games, and for a detailed description of the meaning of each column.
Values denoted with ‘—’ are missing due to out-of-time or out-of-memory errors.

This constraint system defines a dependency graph GX , whose nodes are nodes of the tree, and in which there
is an edge (h, h′) if either h′ is a child of h, or h and h′ are in the same infoset of player i.

Now consider the following tree decomposition of J of GX . For each public state P , the tree decomposition
J has a bag UP that contains all nodes in P and all children of nodes in P . The edges of J are the obvious
edges, connecting each UP to UP ′ if UP ∩ UP ′ ̸= ∅.

One can check that, up to trivial reformulations (that is, removal of redundant variables and constraints), the
constraint system from Theorem 3.38 associated with J is identical to the constraint system associated with
the public state TB-DAG (via (3)). Thus, it is possible to interpret the public state TB-DAG entirely from
the point of view of tree decompositions. We do not take this perspective in the rest of the paper because
using beliefs is more interpretable and understandable from a game-theoretic perspective.

3.7.5 Postprocessing Techniques that Can Be Used to Shrink the TB-DAG
In practice, ConstructTB-DAG is suboptimal in several ways. Here, we state some straightforward postpro-
cessing techniques that can be used to shrink the size of the TB-DAG. These do not affect the theoretical
statements as the primary focus of those is isolating the dependency on our parameters of interest, but they
can significantly affect the practical performance, so we apply them in the experiments.

1. If two terminal nodes z, z′ have the same sequence, we remove one of them (say, z′) from our DAG
because it is redundant, and alias x[{z′}] to x[{z}]. If this removal causes a section of the DAG to no
longer contain any terminal descendants, we also remove that section.

2. If a decision point in the TB-DAG has (at most) one parent and (at most) one child, we remove the
decision point and directly connect the parent observation node to the grandchild decision points.

In particular, if the team has perfect recall, the above two optimizations are sufficient for the TB-DAG to
coincide with the sequence form.

3.8 Experiments
This section investigates the empirical benefits brought about by applying the TB-DAG when computing
mixed-Nash equilibria. As highlighted in Section 3.1, the literature on team games has been the one most
concerned with the efficient computation of mixed Nash, with different works establishing benchmarks and
proposing algorithms. We will, therefore, focus on comparing our approach against those previous related
works. Our main results are reported in Table 6, which reports the size of the original games and our
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Original game TB-DAG EFG
Game {▼} ▲ Value Nodes Information This paper (CFR) ZFCS22 (CG)

Γ u∗ |H| maxP |P | k Init ϵ=10−3 ϵ=10−4 Init ϵ=10−3 ϵ=10−4

3K3 {3} 0.000 151 6 6 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s
3K4 {3} -0.042 601 12 8 0.01s 0.00s 0.00s 0.00s 0.01s 0.02s
3K6 {3} -0.024 3001 30 12 1.03s 0.03s 0.12s 0.00s 0.14s 0.14s
3K8 {3} -0.019 8401 56 16 1m6s 4.73s 32.36s 0.01s 0.23s 0.32s
3K12 {3} -0.014 33,001 132 24 — oom oom 0.01s 0.84s 1.39s
4K5 {3,4} -0.037 7801 20 10 0.55s 0.03s 0.05s — — —
4K5 {4} -0.030 7801 60 15 13.71s 1.59s 6.34s — — —
3L133 {3} 0.215 12,688 9 6 0.49s 0.02s 0.05s 0.02s 24.89s 45.96s
3L143 {3} 0.107 40,409 16 8 1.39s 0.10s 0.48s 0.05s 2m 4s 6m 3s
3L151 {3} -0.019 19,981 20 10 1.54s 0.18s 0.50s 0.04s 3.06s 13.98s
3L153 {3} 0.024 98,606 25 10 16.03s 1.24s 4.94s 0.12s 7m 23s 28m 13s
3L223 {3} 0.516 15,659 4 4 0.13s 0.03s 0.08s 0.05s 13.48s 18.53s
3L523 {3} 0.953 1,299,005 4 4 18.02s 11.26s 24.86s 6.83s > 6h > 6h
4L133 {3,4} 0.147 159,001 9 6 2.03s 0.21s 0.92s — — —
3D3 {3} 0.284 27,622 9 6 0.80s 0.11s 0.40s 0.09s 11.05s 11.05s
3D4 {3} 0.284 524,225 16 8 1m3s 22.54s 1m 28s 1.57s 3h 19m 3h 19m
4D3 {2,4} 0.200 663,472 9 6 27.05s 2.31s 4.70s — — —
6D2 {2,4,6} 0.072 524,225 8 6 10.74s 1.72s 4.26s — — —
6D2 {4,6} 0.265 524,225 16 8 16.55s 3.80s 11.09s — — —
6D2 {6} 0.333 524,225 32 10 31.00s 30.20s 1m 11s — — —

Table 7: Runtime of our CFR-based algorithm (column ‘This paper’) using the team belief
DAG form, compared to the prior state-of-the-art algorithms based on linear programming
and column generation by Zhang et al. (2022b) (‘ZFCS22’), on several standard parametric
benchmark games. See Section 3.8 for a description of the games. Column “Init” represents
the time needed to construct the structures needed for solving the games. This corresponds to
fully exploring the TB-DAG and computing its full representation in memory in the TB-DAG
case. Missing or unknown values are denoted with ‘—’. For each row, the background color
of each runtime column is set proportionally to the ratio with the best runtime for the row,
according to the logarithmic color scale

1 10 ≥ 100
. Runtimes that are more than two orders

of magnitude larger than the best runtime for the row ( i.e., for which R > 102) are colored
as if R = 102.

derived representations, and in Table 7, which reports the time required to solve those instances up to an
approximation factor.

3.8.1 Experimental Setting
First, we give a complete description of the experimental setting in which the different algorithms are tested.
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Game instances. We run experiments on commonly adopted parametric benchmarks in the team games
literature. The following is the naming convention adopted for the instances considered:

• nKr: n-player Kuhn poker with r ranks (Kuhn, 1950b).

• nLbrs: n-player Leduc poker with a b-bet maximum in each betting round, r ranks, and s suits (Southey
et al., 2005).

• nDd: n-player Liar’s Dice with one d-sided die for each player (Lisỳ et al., 2015).

The full description of these games can be found in Farina et al. (2021a). For each game, the players belonging
to team ▽▽▽ are represented along with the name. For example, 4L133 {3,4} indicates a 4-player Leduc poker
game with 1 bet each round, 3 ranks, 3 suits, where players 3 and 4 belong to team ▽▽▽ and are therefore
coordinated by player ▼.

CFR Variant used. We implemented the Predictive CFR+ (PCFR+) (Farina et al., 2021c) state-of-the-art
variant of CFR on the TB-DAG. PCFR+ is a predictive regret minimization algorithm and uses quadratic
averaging of iterates. At each time t, we use the previous utility vector for each time as the prediction for the
next. We remark that applying the CFR algorithm on the belief game and on the TB-DAG leads to identical
iterations since the two representations are structurally equivalent (as proven in Section 3.5), and CFR is a
deterministic algorithm. We therefore focus on the TB-DAG representation due to its efficiency. We also
remark that the optimizations discussed in Sections 3.5.3 and 3.7.5 are applied during the experiments.

Baselines. We use the column generation framework of Farina et al. (2021a) and refined by Zhang et al.
(2022b) (henceforth “ZFCS22”) as the prior state-of-the-algorithm to compare the performance of CFR
on the team belief DAG. ZFCS22 belongs to the family of column generation approaches adopted in the
past literature in team games. ZFCS22 iteratively refines the strategy of each team by solving best-response
problems using a tight integer program derived from the theory of extensive-form correlation (von Stengel
and Forges, 2008). We used the original code by the authors, which was implemented for three-player games
in which a team of two players faces an opponent.

Hardware used. All experiments were run on a 64-core AMD EPYC 7282 processor. Each algorithm was
allocated a maximum of 4 threads, 60GBs of RAM, and a time limit of 6 hours. ZFCS22 uses the commercial
solver Gurobi to solve linear and integer linear programs. All CFR implementations are single-threaded,
while we allowed Gurobi to use up to four threads.

3.8.2 Discussion of the Results
We now discuss the empirical results obtained by our algorithms.

Representation vs Game size. We analyze the size results from Table 6. The different orders of
magnitude of the size of each representation and the original game highlight how the belief game construction
increases the size of the game. Moreover, the striking difference between the two equivalent approaches of belief
game and TB-DAG motivates the introduction of the latter: the direct construction of a decision problem
and the more efficient representation brought by the DAG structure allow the construction of a substantially
smaller representation. The benefits of the DAG imperfect-recall structure are especially beneficial in the case
of Liar’s Dice instances, which have a larger depth of the game tree. Overall, this comparison confirms the
results from the worst-case bounds from Sections 3.3.2, 3.5.1 and 3.7.3. The exponential factor of inefficiency
between the two representations agrees with the results from the discussion in Section 3.7.2.

There are also some minor remarks that are worth to be made. Whenever ▼ is a perfect-recall player
(equivalently, when the team ▽▽▽ is composed of a single player), our constructions never increase the size of its
decision problem. In the case of the belief game, we have that the adversary retains an identical number
of information sets and sequences. In the case of the TB-DAG, the correspondence is |D▼| = |Ĩ▼|+ 1 and
|S▼| = |Σ̃▼|
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Running time. We focus on the time performance of CFR applied to the games from Table 7. The main
observation is that the TB-DAG approach combined with the CFR algorithm has good performance in most
of the games traditionally employed in the team game literature. In particular, impressive performance
is achieved in games where the information complexity is low. This is the case of Leduc and Liar’s Dice
benchmarks (whose number of infosets and sequences in the original game are reported in Table 6). On the
other hand, the column generation approaches struggle since the dimension of the pure strategy space depends
exponentially on the number of information sets. The performance of our method depends crucially on having
low information complexity. In fact, in games such as 3K8 and 3K12 where the information complexity is
high, we observe poor performance even though the game tree is small. On the other hand, column generation
techniques avoid this cost by considering an incrementally larger action space.

3.9 Conclusion
This paper proposed a novel two-player zero-sum representation called the team-belief DAG for the computation
of mixed Nash equilibria in timeable two-player zero-sum imperfect-recall games and team max-min equilibria
with correlation in adversarial team games. We proposed a conversion mechanism that can be interpreted
from the point of view of a perfect-recall coordinator which manages all the player’s strategic choices while not
accessing any information destined to be imperfectly recalled. The behavior of such a coordinator is defined
based on beliefs and observations, novel concepts that allow an intuitive yet effective characterization. We also
introduced a DAG decision problem structure for the TB-DAG to characterize more efficiently our conversion,
by avoiding the pitfalls of an extensive-form characterization of the equivalent game. We theoretically
analyzed the efficiency of our method through worst-case bounding of the size of the converted game, and we
experimentally tested it on a set of customary benchmark games against a state-of-the-art approach from the
literature. Our results are accompanied by novel complexity results that further characterize the hardness of
computing equilibria in imperfect-recall games. In particular, we prove that computing a max-min strategy
in behavioral strategies is ΣP

2 -hard even when the number of players is constant and there is no chance.
Similarly, we prove that computing a Nash equilibrium in mixed strategies is ∆P

2 -hard.

Many directions departing from this work can be interesting for further development of the literature on
imperfect-recall and team games. In particular, designing an algorithm able to exploit both the TB-DAG
representation and the incrementality of column generation is an interesting approach to surpass the previous
developments. Moreover, the TB-DAG construction may possibly be improved by preprocessing the game to
reduce its information complexity, mitigating the exponential blowup due, while generalizing the notion of
triangle-free games (Farina and Sandholm, 2020) to DAG games may extend the class of games that can be
solvable in polynomial time. Another possible direction follows the more traditional two-player zero-sum
literature. It aims to develop specific abstraction, dynamic pruning, and subgame-solving techniques tailored
to our conversion’s resulting two-player zero-sum games. Finally, the question whether some of the results
presented in the paper can be extended to the non-timeable or absent-minded imperfect-recall case is open.

4 Hidden-Role Games: Equilibrium Concepts and Com-
putation

4.1 Introduction
Consider a multiagent system with communication where the majority of agents share incentives, but there
are also hidden defectors who seek to disrupt their progress.

This paper adopts the lens of game theory to characterize and solve a class of games called hidden-role
games25. Hidden-role games model multi-agent systems in which a team of “good” agents work together to
achieve some desired goal, but a subset of adversaries hidden among the agents seeks to sabotage the team.

25These games are often commonly called social deduction games.
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Customarily (and in our paper), the “good” agents make up a majority of the players, but they will not know
who the adversaries are. On the other hand, the adversaries know each other.

Hidden-role games offer a framework for developing optimal strategies in systems and applications that face
deception. They have a strong emphasis on communication: players need to communicate in order to establish
trust, coordinate actions, exchange information, and distinguish teammates from adversaries.

Hidden-role games can be used to model a wide range of recreational and real-world applications. Notable
recreational examples include the popular tabletop games Mafia (also known as Werewolf ) and The Resistance,
of which Avalon is the best-known variant. As an example, consider the game Mafia. The players are split in
an uninformed majority called villagers and an informed minority called mafiosi. The game proceeds in two
alternating phases, night and day. In the night phase, the mafiosi privately communicate and eliminate one
of the villagers. In the day phase, players vote to eliminate a suspect through majority voting. The game
ends when one of the teams is completely eliminated.

We now provide several non-recreational examples of hidden-role games. In many cybersecurity appli-
cations (Garcia Morchon et al., 2007; Garcia-Morchon et al., 2013; Tripathi et al., 2022), an adversary
compromises and controls some nodes of a distributed system whose functioning depends on cooperation and
information sharing among the nodes. The system does not know which nodes have been compromised, and
yet it must operate in the presence of the compromised nodes.

Another instance of problems that can be modeled as hidden-role games arises in AI alignment, i.e., the study
of techniques to steer AI systems towards humans’ intended goals, preferences, or ethical principles (Ziegler
et al., 2019; Ji et al., 2023; Hubinger et al., 2024). In this setting, there is risk that a misaligned AI agent may
attempt to deceive a human user into trusting its suggestions (Park et al., 2023; Scheurer et al., 2023). AI
debate (Irving et al., 2018) aims at steering AI agents by using an adversarial training procedure in which a
judge has to decide which is the more trustful between two hidden agents, one of which is a deceptor trained
to fool the judge. Miller et al. (2021) proposes an experimental setting consisting of a chess game in which
one side is controlled by a player and two advisors, which falls directly under our framework. The advisors
pick action suggestions for the player to choose from, but one of the two advisors has the objective of making
the team lose.

Hidden-role games also include general scenarios where agents receive inputs from other agents which may
be compromised. For example, in federated learning (a popular category of distributed learning methods),
a central server aggregates machine learning models trained by multiple distributed local agents. If some
of these agents are compromised, they may send doctored input with the goal of disrupting the training
process (Mothukuri et al., 2021).

Our paper aims to characterize optimal behavior in these settings, and analyze its computability.

Related work. To the best of our knowledge, there have been no previous works on general hidden-role
games. On the other hand, there has been a limited amount of prior work on solving specific hidden-role
games. Braverman et al. (2006) propose an optimal strategy for Mafia, and analyze the win probability when
varying the number of players with different roles. Similarly, Christiano (2018) proposes a theoretical analysis
for Avalon, investigating the possibility of whispering, i.e. any two players being able to communicate without
being discovered. Both of those papers describe game-specific strategies that can be adopted by players
to guarantee a specific utility to the teams. In contrast, we provide, to our knowledge, the first rigorous
definition of a reasonable solution concept for hidden-role games, an algorithm to find such equilibria, and an
experimental evaluation with a wide range of parameterized instances.

Deep reinforcement learning techniques have also been applied to various hidden-role games (Aitchison et al.,
2021; Kopparapu et al., 2022; Serrino et al., 2019), but with no theoretical guarantees and usually with
no communication allowed between players. A more recent stream of works focused on investigating the
deceptive capabilities of large language models (LLMs) by having them play a hidden-role game (Xu et al.,
2023; O’Gara, 2023). The agents, being LLM-based, communicate using plain human language. However,
as before, these are not grounded in any theoretical framework, and indeed we will illustrate that optimal
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strategies in hidden-role games are likely to involve communication that does not bear resemblance to natural
language, such as the execution of cryptographic protocols.

4.1.1 Main Modeling Contributions
We first here give an informal, high-level description of our game model. We also introduce our main solution
concept of interest, called hidden-role equilibrium, and discuss the challenges it addresses. We will define
these concepts in more formality beginning in Section 4.3.

We define a (finite) hidden-role game as an n-player finite extensive-form game Γ in which the players are
partitioned at the start of the game into two teams. Members of the same team share the same utility
function, and the game is zero-sum, i.e. any gain for one team means a loss for the other. We thus identify
the teams as ▲ and ▼, since teams share the same utility function, but have opposite objectives. At the start
of the game, players are partitioned at random into two teams. A crucial assumption is that one of the two
teams is informed, i.e. all the members of that particular team know the team assignment of all the players,
while this is not true for all players belonging to the other team. Without loss of generality, we use ▲ to refer
to the uninformed team, and ▼ to refer to the informed one.26

To allow our model to cover communication among players, we formally define the communication extensions
of a game Γ. The communication extensions are games like Γ except that actions allowing messages to be sent
between players are explicitly encoded in the game. In the public communication extension, players are able
to publicly broadcast messages. In the private communication extension, in addition to the public broadcast
channel, the players have pairwise private communication channels.27 In all cases, communication channels
are synchronous and authenticated: messages sent on one timestep are received at the next timestep, and are
tagged with their sender. Communication presents the main challenge of hidden role games: ▲-players wish
to share information with teammates, but not with ▼-players.

In defining communication extensions, we must bound the length of the communication, that is, how many
rounds of communication occur in between every move of the game, and how many distinct messages can be
sent on each round. To do this, we fix a finite message space28 of size M and length of communication R,
and in our definition of equilibrium we will take a supremum over M and R. This will allow us to consider
arbitrarily complex message spaces (i.e., M and R arbitrarily large) while still only analyzing finite games:
for any fixed M and R, the resulting game is a finite hidden-role game. We will show that our positive results
(upper bounds) only require log M = R = polylog(|H|, 1/ϵ), where |H| is the number of nodes (histories) in
the game tree and ϵ is the desired precision of equilibrium.

We characterize optimal behavior in the hidden-role setting by converting hidden-role games into team games
in a way that preserves the strategic aspect of hidden-roles. This team game is called split-personality form
of a given hidden-role game. Given a (possibly communication-extended) hidden-role game Γ, we define and
analyze two possible variants:

• the uncoordinated split-personality form USplit(Γ) is a team games with 2n players, derived by splitting
each player i in the original game in two distinct players, i+ and i−, that pick actions for i in Γ if the
player is assigned to team ▲ or ▼ respectively.

• the coordinated split-personality form CSplit(Γ) is the (n+1)-player team game in which the additional
player, who we refer to simply as the adversary or ▼-player, takes control of the actions of all players
who have been assigned to the ▼-team. On the contrary, the players from 1 to n control the players as
usual only if they belong to the team ▲.

The coordinated split-personality variant encodes an extra assumption on ▼’s capabilities, namely, that the
▼-team is controlled by a single player and is therefore perfectly coordinated. Trivially, when only one player

26For example, in Mafia, the villagers are ▲ while mafiosi are ▼.
27If players are assumed to be computationally bounded, pairwise private channels can be created from the public broadcast

channels through public-key cryptography. However, throughout this paper, for the sake of conceptual cleanliness, we will not
assume that players are computationally bounded, and therefore we will distinguish the public-communication case from the
private-communication case.

28Note that, if the message space is of size M , a message can be sent in O(log M) bits.
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is on team ▼, the uncoordinated and coordinated split-personality forms coincide.

In either case, the resulting game is a team game in which each player has a fixed team assignment. We
remark that the split-personality form maintains the strategic aspects of hidden roles, since i+ and i− share
identity when interacting with the environment. For example, players may observe that i has done an action,
but do not know if the controller was i+ or i−. Similarly, messages sent by i+ and i− are signed by player i,
since the communication extension is applied on Γ before splitting personalities.

Picking which split-personality variant to use is a modeling assumption that depends on the game instance
that one wants to address. For example, in many recreational tabletop games, USplit is the more reasonable
choice because ▼-players are truly distinct; however, in a network security game where a single adversary
controls the corrupted nodes, CSplit is the more reasonable choice. The choice of which variant also affects
the complexity of equilibrium computation: as we will detail in later, CSplit yields a more tractable solution
concept. In certain special cases, however, CSplit and USplit will coincide. For example, we will later show
that this is the case in Avalon, which is key to allowing our algorithms to work in that game.

With these pieces in place, we define the hidden-role equilibria (HRE) of a hidden-role game Γ as the team
max-min equilibria (TMEs) of the split-personality form of Γ. That is, the hidden-role equilibria are the
optimal joint strategies for team ▲ in the split-personality game, where optimality is judged by the expected
value against a jointly-best-responding ▼-team. The value of a hidden-role game is the expected value for
▲ in any hidden-role equilibrium. If communication (private or public) is allowed, we define hidden-role
equilibria and values by taking the supremum over M and R of the expected value at the equilibrium, that is,
the ▲-team is allowed to set the parameters of the communication.

Our new solution concept encodes, by design, a pessimistic assumption for the ▲-team. ▲ picks M , R and its
strategy considering a worst-case ▼ adversary that knows this strategy and best-responds to it. Throughout
our proofs, we will heavily make use of this fact. In particular, we will often consider ▼-players that “pretend
to be ▲-players” under certain circumstances, which is only possible if ▼-players know ▲-players’ strategies.
It is not allowed for ▲-players to know ▼-players’ strategies in the same fashion. This is in stark contrast
to usual zero-sum game analysis, where various versions of the minimax theorem promise that the game is
unchanged no matter which side commits first to a strategy. Indeed, we discuss in Section 4.6.2 the fact
that, for hidden-role games, the asymmetry is in some sense necessary: a minimax theorem cannot hold for
nontrivial hidden-role games. We argue, however, that this asymmetry is natural and inherent in the the
hidden-role setting. If we assumed the contrary and inverted the order of the teams so that ▼ commits first
to its strategy, ▲ could discover the roles immediately by agreeing to message a passphrase unknown to ▼ in
the first round, thus spoiling the whole purpose of hidden-role games. This argument will be made formal in
Section 4.6.2.

Existing solution concepts failures. We defined our equilibrium notion as a team max-min equilibrium
(TME) of the split-personality form of a communication-extended hidden role game. Here, we will argue why
some other notions would be less reasonable.

• Nash Equilibrium. A Nash equilibrium (Nash, 1950) is a strategy profile for all players from which no
player can improve its own utility by deviating. This notion is unsuitable for our purposes because it
fails to capture team coordination. In particular, in pure coordination games (in which all players have
the same utility function), which are a special case of hidden-role games (with no hidden roles and no
adversary team at all), a Nash equilibrium would only be locally optimal in the sense that no player
can improve the team’s value alone. In contrast, our notion will lead to the optimal team strategy in
such games.

• Team-correlated equilibrium. The team max-min equilibrium with correlation (von Stengel and Koller,
1997; Celli and Gatti, 2018) (TMECor), is a common solution concept used in team games. It arises
from allowing each team the ability to communicate in private (in particular, to generate correlated
randomness) before the game begins. For team games, TMECor is arguably a more natural notion
than TME, as the corresponding optimization problem is a bilinear saddle-point problem, and therefore
in particular the minimax theorem applies, avoiding the issue of which team ought to commit first.
However, for hidden-role games, TMECor is undesirable, because it does not make sense for a team
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to be able to correlate with teammates that have not even been assigned yet. The team max-min
equilibrium with communication (TMECom) (Celli and Gatti, 2018) makes an even stronger assumption
about communication among team members, and therefore suffers the same problem.

4.1.2 Main Computational Contributions
We now introduce computational results, both positive and negative, for computing the hidden-role value
and hidden-role equilibria of a given game.

Polynomial-time algorithm. Our main positive result is summarized in the following informal theorem
statement.

Theorem 4.1 (Main result, informal; formal result in Theorem 4.12). If the number of players is
constant, private communication is available, the ▼-team is a strict minority (i.e., strictly less than
half of the players are on the ▼-team), and the adversary is coordinated, there is a polynomial-time
algorithm for exactly computing the hidden-role value.

This result should be surprising, for multiple reasons. First, team games are generally hard to solve (von
Stengel and Koller, 1997; Zhang et al., 2023b), so any positive result for computing equilibria in team
games is fairly surprising. Further, it is a priori not obvious that the value of any hidden-role game with
private communication and coordinated adversary is even a rational number29, much less computable in
polynomial time: for example, there exist adversarial team games with no communication whose TME values
are irrational (von Stengel and Koller, 1997).

There are two key ingredients to the proof of Theorem 4.1. The first is a special type of game which we call a
mediated game. In a mediated game, there is a player, the mediator, who is always on team ▲. ▲-players can
therefore communicate with it and treat it as a trusted party. We show that, when a mediator is present (and
all the other assumptions of Theorem 4.1 also hold), the hidden-role value is computable in polynomial time.
To do this, we state and prove a form of revelation principle. Informally, our revelation principle states that,
without loss of generality, it suffices to consider ▲-team strategies in which, at every timestep of the game,

1. all ▲-players send their honest information to the mediator,

2. the mediator sends action recommendations to all players (regardless of their team allegiance; remember
that the mediator may not know the team assignment), and

3. all ▲-players play their recommended actions.

▼-team players are, of course, free to pretend to be ▲-team players and thus send false information to
the mediator; the mediator must deal with this possibility. However, ▼-team players cannot just send any
message; they must send messages that are consistent with some ▲-player, lest they be immediately revealed
as ▼-team. These observations are sufficient to construct a two-player zero-sum game Γ0, where the mediator
is the ▲-player and the coordinated adversary is the ▼-player. The value of Γ0 is the value of the original
hidden-role game, and the size of Γ0 is at most polynomially larger than the size of the original game. Since
two-player zero-sum extensive-form games can be solved in polynomial time (Koller et al., 1994; von Stengel,
1996), it follows that mediated hidden-role games can also be solved in polynomial time.

The second ingredient is to invoke results from the literature on secure multi-party computation to simulate a
mediator in the case that one is not already present. A well-known result from that literature states that so
long as strictly more than half of the players are honest, essentially any interactive protocol—such as the ones
used by our mediator to interact with other players—can be simulated efficiently such that the adversary can
cause failure of the protocol or leakage of information (Beaver, 1990; Rabin and Ben-Or, 1989).30 Chaining

29assuming all game values and chance probabilities are also rational numbers
30In this part of the argument, the details about the communication channels become important: in particular, the MPC

results that we use for our main theorem statement assume that the network is synchronous (i.e., messages sent in round r
arrive in round r + 1), and that there are pairwise private channels and a public broadcast channel that are all authenticated
(i.e., message receivers know who sent the message). This is enough to implement MPC so long as k < n/2, where k is the
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such a protocol with the argument in the previous paragraph concludes the proof of the main theorem.

Related works on MPC and communication equilibria. The communication equilibrium (Forges, 1986;
Myerson, 1986) is a notion of equilibrium with a mediator, in which the mediator has two-way communication
with all players, and players need to be incentivized to report information honestly and follow recommendations.
Communication equilibria include all Nash equilibria, and therefore are unfit for general hidden-role games
for the same reason as Nash equilibria, as discussed in the previous subsection.

However, when team ▼ has only one player and private communication is allowed, the hidden-role equilibria
coincide with the ▲-team-optimal communication equilibria in the original game Γ. Our main result covers
this case, but an alternative way of computing a hidden-role equilibrium in this special case is to apply the
optimal communication equilibrium algorithms of Zhang and Sandholm (2022a) or Zhang et al. (2023a).
However, those algorithms either involve solving linear programs, solving many zero-sum games, or solving
zero-sum games with large reward ranges, which will be less efficient than directly solving a single zero-sum
game Γ0.

We are not the first to observe that multi-party computation can be used to implement a mediator for use in
game theory. In various settings and for various solution concepts, it is known to be possible to implement
a mediator using only cheap-talk communication among players [e.g., Urbano and Vila, 2002; Liu, 2017;
Abraham et al., 2006; Izmalkov et al., 2005]. For additional reading on the connections between game theory
and cryptography, we refer the reader to the survey of Katz (2008), and papers citing and cited by this survey.

Lower bounds. We also show lower bounds on the complexity of computing the hidden-role value, even for
a constant number of players, when any of the assumptions in Theorem 4.1 is broken.

Theorem 4.2 (Lower bounds, informal; formal statement in Theorems 4.14 and 4.15). If private
communication is disallowed, the hidden-role value problem is NP-hard. If the ▼-team is uncoordinated,
the problem is coNP-hard. If both, the problem is ΣP

2 -hard. All hardness reductions hold even when the
▼-team is a minority and the number of players is an absolute constant.

Price of hidden roles. Finally, we define and compute the price of hidden roles. It is defined (analogously
to the price of anarchy and price of stability, which are common quantities of study in game theory) as the
ratio between the value of a hidden-role game, and the value of the same game with team assignments made
public. We show the following:

Theorem 4.3 (Price of hidden roles; formal statement in Theorem 4.19). Let D be a distribution
of team assignments. For the class of games where teams are drawn according to distribution D, the
price of hidden roles is equal to 1/p, where p is the probability of the most-likely team in D.

Intuitively, in the worst case, the ▲-team can be forced to guess at the beginning of the game all the members
of the ▲-team, and win if and only if its guess is correct. In particular, for the class of n-player games with k
adversaries, the price of hidden roles is exactly

(
n
k

)
.

number of adversaries and n is the number of players. Our results, however, do not depend on the specific assumptions about
the communication channel, so long as said assumptions enable secure MPC with guaranteed outcome delivery. For a recent
survey of MPC, see Lindell (2020). For example, if k < n/3 then MPC does not require a public broadcast channel, so neither
do our results. For cleanliness, and to avoid introducing extra formalism, we will stick to one model of communication.
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4.1.3 Experiments: Avalon
We ran experiments on the popular tabletop game The Resistance: Avalon (or simply Avalon, for short). As
discussed earlier, despite the adversary team in Avalon not being coordinated in the sense used in the rest of
the paper, we show that, at least for the 5- and 6-player variants, the adversary would not benefit from being
coordinated; therefore, our polynomial-time algorithms can be used to solve the game. This observation
ensures that our main result applies. Game-specific simplifications allow us to reduce the game tree from
roughly 1056 nodes (Serrino et al., 2019) to 108 or even fewer, enabling us to compute exact equilibria. Our
experimental evaluation demonstrates the practical efficacy of our techniques on real game instances. Our
results are discussed in Section 4.7, and further detail on the game-specific reductions used, as well as a
complete hand-analysis of a small Avalon variant, can be found in the appendix of the full paper (Carminati
et al., 2024b).

4.1.4 Examples
In this section we present three examples that will hopefully help the reader in understanding our notion of
equilibrium and justify some choices we have made in our definition.

A hidden-role matching pennies game. Consider a n-player version of matching pennies (with n > 2),
which we denote as MP(n). One player is chosen at random to be the adversary (team ▼). All n players then
simultaneously choose bits bi ∈ {0, 1}. Team ▲ wins (gets utility 1) if and only if all n bits match; else, team
▲ loses (gets utility 0).

With no communication, the value of this game is 1/2n−1: it is an equilibrium for everyone to play uniformly
at random. Public communication does not help, because, conditioned on the public transcript, bits chosen
by players must be mutually independent. Thus, the adversary can do the following: pretend to be on team
▲, wait for all communication to finish, and then play 0 if the string of all ones is more conditionally likely
than the string of all 1s, and vice-versa.

With private communication, however, the value becomes 1/(n + 1). Intuitively, the ▲-team should attempt
to guess who the ▼-player is, and then privately discuss among the remaining n− 1 players what bit to play.
We defer formal proofs of the above game values to Section 4.5, because they rely on results in Section 4.4.1.

Simultaneous actions. In typical formulations of extensive-form imperfect-information games, it is
without loss of generality to assume that games are turn-based, i.e., only one player acts at any given time.
To simulate simultaneous actions with sequential ones, one can simply forbid players from observing each
others’ actions. However, when communication is allowed arbitrarily throughout the game, the distinction
between simultaneous and sequential actions suddenly becomes relevant, because players can communicate
when one—but not all—the players have decided on an action.

To illustrate this, consider the game MP(n) defined in the previous section, with public communication,
except that the players act in sequence in order of index (1, 2, . . . , n). We claim that the value of this game is
not 1/2n−1, but at least 1/2n. To see this, consider the following strategy for team ▲. The ▲ players wait
for P1 to (privately) pick an action. Then, P2 publicly declares a bit b ∈ {0, 1}, and all remaining players
play b if they are on team ▲. If P1 was the ▼ player, this strategy wins with probability at least 1/2, so the
expected value is at least 1/2n. This example illustrates the importance of allowing simultaneous actions in
our game formulations.

50



Correlated randomness matters. We use our third and final example to discuss a nontrivial consequence
of the definition of hidden-role equilibrium that may appear strange at first: it is possible for seemingly-useless
information to affect strategic decisions and the game value.

To illustrate, consider the following simple game Γ: there are three players, and three role cards. Two of the
three cards are marked ▲, and the third is marked ▼. The cards are dealt privately and randomly to the
players. Then, after some communication, all three players simultaneously cast votes to elect a winner. If no
player gains a majority of votes, ▼ wins. Otherwise, the elected winner’s team wins. Clearly, ▲ can win no
more than 2/3 of the time in this game: ▼ can simply pretend to be on team ▲, and in that case ▲ cannot
gain information, and the best they can do is elect a random winner.

Now consider the following seemingly-meaningless modification to the game. We will modify the two ▲
cards so that they are distinguishable. For example, one card has ▲ written on it, and the other has ▲′.
We argue that this, perhaps surprisingly, affects the value of the game. In fact, the ▲ team can now win
deterministically, even with only public communication. Indeed, consider following strategy. The two players
on ▲ publicly declare what is written on their cards (i.e., ▲ or ▲′). The player elected now depends on
what the third player did. If one player does not declare ▲ or ▲′, elect either of the other two players. If
two players declared ▲, elect the player who declared ▲′. If two players declare ▲′, elect the player who
declared ▲. This strategy guarantees a win: no matter what the ▼-player does, any player who makes a
unique declaration is guaranteed to be on the ▲-team.

What happens in the above example is that making the cards distinguishable introduces a piece of correlated
randomness that ▲ can use: the two ▲ players receive cards whose labels are (perfectly negatively) correlated
with each other. Since our definition otherwise prohibits the use of such correlated randomness (because
players cannot communicate only with players on a specific team), introducing some into the game can have
unintuitive effects. In Section 4.6.2, we expand on the effects of allowing correlated randomness: in particular,
we argue that allowing correlated randomness essentially ruins the point of hidden-role games by allowing the
▲ team to learn the entire team assignment.

4.2 Preliminaries
Our notation in this part differs slightly from other parts of this thesis. For reasons alluded to in the
introduction, we explicitly allow simultaneous moves in our formulation. More specifically, at each history
h ∈ H \ Z, every player (including chance) selects an action a ∈ Ai(h), and the edges leaving h are identified
with joint actions a ∈×i∈[n]∪C Ai(h). Thus, each player’s infoset partition I is a partition of H \ Z.

An extensive-form game is an adversarial team game (ATG) if there is a team assignment t ∈ {▲,▼}n and a
team utility function u : Z → R such that ui(z) = u(z) if ti = ▲, and ui(z) = −u(z) if ti = ▼. That is, each
player is assigned to a team, all members of the team get the same utility, and the two teams are playing an
adversarial zero-sum game31. In this setting, we will write xi ∈ Xi and yj ∈ Yj for a generic strategy of a
player on team ▲ and ▼ respectively. ATGs are fairly well studied. In particular, Team Maxmin Equilibria
(TMEs) (von Stengel and Koller, 1997; Celli and Gatti, 2018) and their variants are the common notion of
equilibrium employed. The value of a given strategy profile x for team ▲ is the value that x achieves against
a best-responding opponent team. The TME value is the value of the best strategy profile of team ▲. That
is, the TME value is defined as

TMEVal(Γ) := max
x∈×i∆(Xi)

min
y∈×j∆(Yj)

u(x,y), (4)

and the TMEs are the strategy profiles x that achieve the maximum value. Notice that the TME problem
is nonconvex, since the objective function u is nonlinear as a function of x and y. As such, the minimax
theorem does not apply, and swapping the teams may not preserve the solution. Computing an (approximate)
TME is ΣP

2 -complete in extensive-form games (Zhang et al., 2023b).
31This is a slight abuse of language: if the ▲ and ▼ teams have different sizes, the sum of all players’ utilities is not zero.

However, such a game can be made zero-sum by properly scaling each player’s utility. The fact that such a rescaling operation
does not affect optimal strategies is a basic result for von Neumann–Morgenstern utilities (Maschler et al., 2020, Chapter 2.4).
We will therefore generally ignore this detail.
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4.3 Equilibrium Concepts for Hidden-Role Games
While the notion of TME is well-suited for ATGs, it is not immediately clear how to generalize it to the
setting of hidden-role games. We do so by formally defining the concepts of hidden-role game, communication
and split-personality form first introduced in Section 4.1.1.

Definition 4.4. An extensive-form game is a zero-sum hidden-role team game, or hidden-role game for short,
if it satisfies the following additional properties:

1. At the root node, only chance has a nontrivial action set. Chance chooses a string t ∼ D ∈ ∆({▲,▼}n),
where ti denotes the team to which player i has been assigned. Each player i privately observes (at
least32) their team assignment ti. In addition, ▼-players privately observe the entire team assignment t.

2. The utility of a player i is defined completely by its team: there is a u : Z → R for which ui(z) = u(z)
if player i is on team ▲ at node z, and −u(z) otherwise.33

In some games, players observe additional information beyond just their team assignments. For example, in
Avalon, one ▲-player is designated Merlin, and Merlin has additional information compared to other ▲-players.
In such cases, we will distinguish between the team assignment and role of a player: the team assignment
is just the team that the player is on (▲ or ▼), while the role encodes the extra private information of the
player as well, which may affect what actions that player is allowed to legally take. For example, the team
assignment of the player with role Merlin is ▲. We remark that additional imperfect information of the game
may be observed after the root node.34

Throughout this paper, we will use k to denote the largest number of players on the ▼-team, that is,
k = maxt∈supp(D) |{i : ti = ▼}|.

4.3.1 Models of Communication
The bulk of this paper concerns notions of equilibrium that allow communication between the players. We
distinguish in this paper between public and private communication:

1. Public communication: There is an open broadcast channel on which all players can send messages.

2. Private communication: In addition to the open broadcast channel, each pair of players has access
to a private communication channel. The private communication channel reveals to all players when
messages are sent, but only reveals the message contents to the intended recipients.

Assuming that public-key cryptography is possible (e.g., assuming the discrete logarithm problem is hard)
and players are polynomially computationally bounded, public communication and private communication
are equivalent, because players can set up pairwise private channels via public-key exchange. However, in
this paper, we assume that agents are computationally unbounded and thus treat the public and private
communication cases as different. Our motivation for making this distinction is twofold. First, it is conceptually
cleaner to explicitly model private communication, because then our equilibrium notion definitions do not
need to reference computational complexity. Second, perhaps counterintuitively, equilibria with public
communication only may be more realistic to execute in practice in human play, precisely because public-key
cryptography breaks. That is, the computationally unbounded adversary renders more “complex” strategies
of the ▲-team (involving key exchanges) useless, thus perhaps resulting in a simpler strategy. We emphasize
that, in all of our positive results in the paper, the ▲-team’s strategy is efficiently computable.

To formalize these notions of communication, we now introduce the communication extension.
32It is allowable for ▲-players to also have more observability of the team assignment, e.g., certain ▲-players may know who

some ▼-players are.
33While at a first look this condition is similar to the one in ATGs, we remark that in this case the number of players in

a team depends on the roles assigned at the start. The same considerations as Footnote 31 on the zero-sum rescaling of the
utilities hold.

34This is an important difference with respect to Bayesian games (Harsanyi, 1967–68), which assume all imperfect information
to be the initial types of the players. Conversely, we have an imperfect information structure that evolves throughout the game,
while only the teams are assigned and observed at the start.
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Definition 4.5. The public and private (M, R)-communication extensions corresponding to a hidden-role
game Γ are defined as follows. Informally, between every step of the original game Γ, there will be R rounds
of communication; in each round, players can send a public broadcast message and private messages to each
player. The communication extension starts in state h = ∅ ∈ HΓ. At each game step of Γ:

1. Each player i ∈ [n] observes its infoset Ii ∋ h.

2. For each of R successive communication rounds:

(a) Each player i simultaneously chooses a message mi ∈ [M ] to broadcast publicly.

(b) If private communication is allowed, each player i also chooses messages mi→j ∈ [M ] ∪ {⊥} to
send to each player j ̸= i. ⊥ denotes that the player does not send a private message at that time.

(c) Each player j observes the messages mi→j that were sent to it, as well as all messages mi that
were sent publicly. That is, by notion of communication, the players observe:

• Public: player j observes the ordered tuple (m1, . . . , mn).

• Private: player j also observes the ordered tuple (m1→j , . . . , mn→j), and the set {(i, k) :
mi→k ̸= ⊥}. That is, players observe messages sent to them, and players see when other
players send private messages to each other (but not the contents of those messages)

3. Each player, including chance, simultaneously plays an action ai ∈ Ai(h). (Chance plays according to
its fixed strategy.) The game state h advances accordingly.

We denote the (M, R)-extensions as CommM,R
priv (Γ), and CommM,R

pub (Γ). To unify notation, we also define
CommM,R

none (Γ) = Γ. When the type of communication allowed and number of rounds are not relevant, we use
Comm(Γ) to refer to a generic extension.

4.3.2 Split Personalities
We introduce two different split-personality forms USplit(Γ) and CSplit(Γ) of a hidden-role game Γ, The
split-personality forms are adversarial team games which preserve the characteristics of Γ.

Definition 4.6. The uncoordinated split-personality form35 of an n-player hidden-role game Γ is the 2n-player
adversarial team game USplit(Γ) in which each player i is split into two players, i+ and i−, which control
player i’s actions when i is on team ▲ and team ▼ respectively.

Unlike the original hidden-role game Γ, the split-personality game is an adversarial team game without hidden
roles: players i+ are on the ▲ team, and i− are on the ▼-team. Therefore, we are able to apply notions of
equilibrium for ATGs to USplit(Γ). We also define the coordinated split-personality form:

Definition 4.7. The coordinated split-personality form of an n-player hidden-role game Γ is the (n + 1)-player
adversarial team game CSplit(Γ) formed by starting with USplit(Γ) and merging all ▼-players into a single
adversary player, who observes all their observations and chooses all their actions.

Assuming ▼ to be coordinated is a worst-case assumption for team ▲, which however can be justified. In
many common hidden-role games, such as the Mafia or Werewolf family of games and most variants of Avalon,
such an assumption is not problematic, because the ▼-team has essentially perfect information already. In the
appendix of the full paper (Carminati et al., 2024b), we justify why this assumption is safe also in some more
complex Avalon instances considered. The coordinated split-personality form will be substantially easier to
analyze, and in light of the above equivalence for games like Avalon, we believe that it is important to study
it.

When team ▼ in Γ is already coordinated, that is, if every ▼-team member has the same observation at every
timestep, the coordinated and uncoordinated split-personality games will, for all our purposes, coincide: in
this case, any strategy of the adversary in CSplit(Γ) can be matched by a joint strategy of the ▼-team
members in USplit(Γ). This is true in particular if there is only one ▼-team member. But, we insert here a

35In the language of Bayesian games, the split-personality form would almost correspond to the agent form.
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warning: even when the base game Γ has a coordinated adversary team, the private communication extension
Commpriv(Γ) will not. Thus, with private-communication extensions of Γ, we must distinguish the coordinated
and uncoordinated split-personality games even if Γ itself is coordinated.

4.3.3 Equilibrium Notions
We now define the notions of equilibrium that we will primarily study in this paper.

Definition 4.8. The uncoordinated value of a hidden-role game Γ with notion of communication c is defined
as

UValc(Γ) := sup
M,R

UValM,R
c (Γ)

where UValM,R
c (Γ) is the TME value of USplit(CommM,R

c (Γ)). The coordinated value CValc(Γ) is defined
analogously by using CSplit.

Definition 4.9. An ϵ-uncoordinated hidden-role equilibrium of Γ with a particular notion of communication
c ∈ {none, pub, priv} is a tuple (M, R,x) where x is a ▲-strategy profile in USplit(CommM,R

c (Γ)) of value
at least UValc(Γ)− ϵ. The ϵ-coordinated hidden-role equilibria is defined analogously, again with CSplit and
CVal instead of USplit and UVal.

As discussed in Section 4.1.1, our notion of equilibrium is inherently asymmetric due to its max-min definition.
The ▲-team is the first to commit to a strategy and a communication scheme, and ▼ is allowed to know both
how much communication will be used (i.e., M and R) as well as ▲’s entire strategy x. As mentioned before,
this asymmetry is fundamental in our setting, and we will formalize it in Section 4.6.2.

4.4 Computing Hidden-Role Equilibria
In this section, we show the main computational results regarding the complexity of computing an hidden-role
equilibrium in different settings. We first provide positive results for the private-communication case in
Section 4.4.1 while the negative computational results for the no/public-communications cases are presented
in Section 4.4.2. The results are summarized in Table 8.

4.4.1 Computing Private-Communication Equilibria
In this section, we show that it is possible under some assumptions to compute equilibria efficiently for
hidden-role games. In particular, in this section, we assume that

1. there is private communication,

2. the adversary is coordinated, and

3. the adversary is a minority (k < n/2).

Games with a publicly-known ▲-player. First, we consider a special class of hidden-role games which
we call mediated. In a mediated game, there is a player, who we call the mediator, who is always assigned to
team ▲. The task of the mediator is to coordinate the actions and information transfer of team ▲. Our main
result of this subsection is the following:

Theorem 4.10 (Revelation Principle). Let Γ∗ be a mediated hidden-role game. Then, for R ≥ 2 and
M ≥ |H|, there exists a coordinated private-communication equilibrium in which the players on ▲
have a TME profile in which, at every step, the following events happen in sequence:

1. every player on team ▲ sends its observation privately to the mediator,
2. the mediator sends to every player (▲ and ▼) a recommended action, and
3. all players on team ▲ play their recommended actions.
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Players on team ▼, of course, can (and will) lie or deviate from recommendations as they wish. The above
revelation principle imples the following algorithmic result:

Theorem 4.11. Let Γ∗ be a mediated hidden-role game, R ≥ 2, and M ≥ |H|. An (exact) coordinated
private-communication hidden-role equilibrium of Γ∗ can be computed by solving an extensive-form
zero-sum game Γ0 with at most |H|k+1 nodes, where H is the history set of Γ∗.

Proofs of Theorems 4.10 and 4.11 can be found in the appendix of the full paper (Carminati et al., 2024b).

We give a sketch of how the two-player zero-sum game is structured. Theorem 4.10 allows us to simplify
the game by fixing the actions of all players on team ▲, leaving two strategic players, the mediator and the
adversary. Any node from the original game is expanded into three levels:

1. the adversary picks messages on behalf of all ▼-players to send to the mediator,

2. the mediator picks recommended actions to send to all players, and

3. the adversary acts on behalf of all ▼-players.

The key to proving Theorem 4.11 is that, in the first step above, the adversary’s message space is not too
large. Indeed, any message sent by the adversary must be a message that could have plausibly been sent by
a ▲-player: otherwise the mediator could automatically infer that the sender must be the adversary. It is
therefore possible to exclude all other messages from the game since they belong to dominated strategies.
Carefully counting the number of such messages would complete the proof.

It is crucial in the above argument that the ▼-team is coordinated; indeed, otherwise, it would not be valid
to model the ▼-team as a single adversary in Γ0. For more elaboration on the case where the ▼-team is not
coordinated, we refer the reader to the appendix of the full paper (Carminati et al., 2024b).

In practice, zero-sum extensive-form games can be solved very efficiently in the tabular setting with linear
programming (Koller et al., 1994), or algorithms from the counterfactual regret minimization (CFR) fam-
ily (Brown and Sandholm, 2019a; Farina et al., 2021c; Zinkevich et al., 2007). Thus, Theorem 4.11 gives an
efficient algorithm for solving hidden-role games with a mediator.

Simulating mediators with multi-party computation. In this section, we show that the previous result
essentially generalizes (up to exponentially-small error) to games without a mediator, so long as the ▼ team
is also a minority, that is, k < n/2. Informally, the main result of this subsection states that, when private
communication is allowed, one can efficiently simulate the existence of a mediator using secure multi-party
computation (MPC), and therefore team ▲ can achieve the same value. The form of secure MPC that we use
is information-theoretically secure; that is, it is secure even against computationally-unbounded adversaries.

Theorem 4.12 (Main theorem). Let Γ be a hidden-role game with k < n/2. Then CValpriv(Γ) =
CValpriv(Γ∗), where Γ∗ is Γ with a mediator added, and moreover this value can be computed in |H|O(k)

time by solving a zero-sum game of that size. Moreover, an ϵ-hidden-role equilibrium with private
communication and log M = R = polylog(|H|, 1/ϵ) can be computed and executed by the ▲-players in
time poly(|H|k, log(1/ϵ)).

The proof uses MPC to simulate the mediator and then executes the equilibrium given by Theorem 4.11.
The proof of Theorem 4.12, as well as requisite background on multi-party computation, are deferred to the
appendix of the full paper (Carminati et al., 2024b). We emphasize that Theorems 4.11 and 4.12 are useful
not only for algorithmically computing an equilibrium, but also for manual analysis of games: instead of
analyzing the infinite design space of possible messaging protocols, it suffices to analyze the finite zero-sum
game Γ0. Our experiments on Avalon use both manual analysis and computational equilibrium finding
algorithms to solve instances.
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Communication Type
Adversary Team Assumptions None Public Private

Coordinated, Minority NP-complete
(von Stengel and Koller, 1997)

NP-hard P [Thm. 4.12]
Coordinated [Thm. 4.14] open problem

Minority ΣP
2 -complete ΣP

2 -hard coNP-hard
None [Thm. 4.15] and (Zhang et al., 2023b) [Thm. 4.15] [Thm. 4.15]

Table 8: Complexity results for computing hidden-role value with a constant number of
players, for various assumptions about the adversary team and notions of communication.
The results shaded in green are new to our paper.

Comparison with communication equilibria. As mentioned in Section 4.1.2, our construction simulating
a mediator bears resemblance to the construction used to define communication equilibria (Forges, 1986;
Myerson, 1986). At a high level, a communication equilibrium of a game Γ is a Nash equilibrium of Γ
augmented with a mediator that is playing according to some fixed strategy µ. Indeed, when team ▼ has
only one player, it turns out that the two notions coincide:

Theorem 4.13. Let Γ be a hidden-role game with k = 1. Then CValpriv(Γ) is exactly the value for ▲
of the ▲-optimal communication equilibrium of Γ.

However, in the more general case where ▼ can have more than one player, Theorem 4.13 does not apply: in
that case, communication equilibria include all Nash equilibria in particular, and therefore fail to enforce
joint optimality of the ▼-team, so our concepts and methods are more suitable. The proof is deferred to the
appendix of the full paper (Carminati et al., 2024b).

4.4.2 Computing No/Public-Communication Equilibria
In this section, we consider games with no communication or with public-communication and a coordinated
minority. Conversely to the private-communication case of Section 4.4.1, in this case the problem of computing
the value of a hidden-role equilibrium is in general NP-hard.

For the remainder of this section, when discussing the problem of “computing the value of a game”, we
always mean the following promise problem: given a game, a threshold v, and an allowable error ϵ > 0 (both
expressed as rational numbers), decide whether the hidden-role value of Γ is ≥ v or ≤ v − ϵ.

Theorem 4.14. Even in 2-vs-1 games with public roles and ϵ = 1/poly(|H|), computing the TME value
(and hence also the hidden-role value, since adversarial team games are a special case of hidden-role
games) with public communication is NP-hard.

Since there is only one ▼-player in the above reduction, the result applies regardless of whether the adversary
is coordinated.

Theorem 4.15. Even with a constant number of players, a minority adversary team, and ϵ =
1/poly(|H|), computing the uncoordinated value of a hidden-role game is coNP-hard with private
communication and ΣP

2 -hard with public communication or no communication.

Proofs of results in this section are deferred to the appendix of the full paper (Carminati et al., 2024b).
Intuitively, the proofs work by constructing gadgets that prohibit any useful communication, thus reducing
to the case of no communication.
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4.5 Worked Example
This section includes a worked example of value computation to illustrate the differences among the notions of
equilibrium discussed in the paper and illustrates the utility of having a mediator for private communication.
Consider a n-player version of matching pennies MP(n) as defined in Section 4.1.4.

Proposition 4.16. Let MP(n) be the n-player matching pennies game.
1. The TMECor and TMECom values of PublicTeam(MP(n)) are both 1/2.
2. Without communication or with only public communication, the value of MP(n) is 1/2n−1.
3. With private communication, the value of MP(n) is 1/(n + 1).

Proof. The first claim, as well as the no-communication value, is known (Basilico et al., 2017).

For the public-communication value, observe that, conditioned on the transcript, the bits chosen by the
players must be mutually independent of each other. Thus, the adversary can do the following: pretend to be
on team ▲, wait for all communication to finish, and then play 0 if the string of all ones is more conditionally
likely than the string of all 1s, and vice-versa36.

It thus only remains to prove the third claim.

(Lower bound) The players simulate a mediator using multi-party computation (see Theorems 4.11 and 4.12).
Consider the following strategy for the mediator. Sample a string b ∈ {0, 1}n uniformly at random from the
set of 2n + 2 strings that has at most one mismatched bit. Recommend to each player i that they play bi.

Consider the perspective of the adversary. The adversary sees only a recommended bit bi. Assume WLOG
that bi = 0. Then there are n + 1 possibilities:

1. b is all zeros (1 way)

2. All other bits of b are 1 (1 way)

3. Exactly one other bit of b is 1 (n− 1 ways).

The adversary wins in the third case automatically (since the team has failed to coordinate), and, regardless
of what the adversary does, it can win only one of the first two cases. Thus the adversary can win at most
n/(n + 1) of the time, that is, this strategy achieves value 1/(n + 1).

(Upper bound) Consider the following adversary strategy. The adversary communicates as it would do if
it were on team ▲. Let bi be the bit that the adversary would play if it were on team ▲. The adversary
plays bi with probability 1/(n + 1) and 1− bi otherwise. We need only show that no pure strategy of the
medaitor achieves value better than 1/(n + 1) against this adversary. A strategy of the mediator is identified
by a bitstring b. If b is all zeros or all ones, the team wins if and only if the adversary plays bi (probability
1/(n + 1)). If b has a single mismatched bit, the team wins if and only if the mismatched bit is the adversary
(probability 1/n) and the adversary flips bi (probability n/(n + 1)).

36In general, computing the conditional probabilities could take exponential time, but when defining the notion of value here,
we are assuming that players have unbounded computational resources. This argument not work for computationally-bounded
adversaries. Indeed, if the adversary were computationally bounded, ▲ would be able to use cryptography to build private
communication channels and thus implement a mediator, allowing our main positive result Theorem 4.12 to apply.
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4.6 Properties of Hidden-role Equilibria
In the following, we discuss interesting properties of hidden-role equilibria given the definition we provided in
Section 4.1.1, and that make them fairly unique relative to other notions of equilibrium in team games.

4.6.1 The Price of Hidden Roles
One interesting question arising from hidden-role games is the price of having them. That is, how much value
does ▲ lose because roles are hidden? In this section, we define this quantity and derive reasonably tight
bounds on it.

Definition 4.17. The public-team refinement of an n-player hidden-role game Γ is the adversarial team
game PublicTeam(Γ) defined by starting with the (uncoordinated) split-personality game, and adding the
condition that all team assignments ti are publicly observed by all players.

Definition 4.18. For a given hidden-role game Γ in which ▲ is guaranteed a nonnegative value (i.e.,
ui(z) ≥ 0 whenever i is on team ▲), the price of hidden roles PoHR(Γ) is the ratio between the TME value of
PublicTeam(Γ) and the hidden-role value of USplit(Γ).

For a given class of hidden-role games G, the price of hidden roles PoHR(G) is the supremum of the price of
hidden roles across all games Γ ∈ G.

Theorem 4.19. Let D ∈ ∆({▲,▼}n) be any distribution of teams assignments. Let Gn,D be the class
of all hidden-role games with n players and team assignment distribution D. Then the price of hidden
roles of Gn,D is exactly the largest probability assigned to any team by D, that is,

PoHR(Gn,D) = max
t∈{▲,▼}n

Pr
t′∼D

[t′ = t].

The lower bound is achieved even in the presence of private communication.

Proof. Let t∗ be the team to which D assigns the highest probability, and let p∗ be that probability. Our
goal is to show that the price of hidden roles is 1/p∗.

(Upper bound) Team ▲ assumes that the true ▲-team is exactly the team t∗. Then ▲ gets utility at most a
factor of 1/p∗ worse than the TME value of PublicTeam(Γ): if the assumption is correct, then ▲ gets the
TME value; if the assumption is incorrect, ▲ gets value at least 0 thanks to the condition on ▲’s utilities in
Definition 4.18.

(Lower bound) Consider the following game Γ. Nature first selects a team assignment t ∼ D and each player
privately observes its team assignment. Then, all players are simultaneously asked to announce what they
believe the true team assignment is. The ▲-team wins if every ▲-player announces the true team assignment.
If ▲ wins, ▲ gets utility 1; otherwise ▲ gets utility 0.

Clearly, if teams are made public, ▲ wins easily. With teams not public, suppose that we add a mediator to
the game so that Theorem 4.10 applies. This cannot decrease ▲’s value. The mediator’s strategy amounts to
selecting what team each player should announce. Mediator strategies in which different players announce
different teams are dominated. The mediator strategy in which the mediator tells every player to announce
team t wins if and only if t is the true team, which happens with probability at most p∗ (if t = t∗). Thus,
even the game with a mediator added has value at most p∗, completing the proof.

This implies immediately:

Corollary 4.20. Let Gn,k be the class of all hidden-role games where the number of players and
adversaries are always exactly n and k respectively. The price of hidden roles in Gn,k is exactly

(
n
k

)
.
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Variant 5 Players 6 Players
No special roles (Resistance) 3 / 10 = 0.3000* 1 / 3 ≈ 0.3333*
Merlin 2 / 3 ≈ 0.6667* 3 / 4 = 0.7500*
Merlin + Mordred 731 / 1782 ≈ 0.4102 6543 / 12464 ≈ 0.5250
Merlin + 2 Mordreds 5 / 18 ≈ 0.2778 99 / 340 ≈ 0.2912
Merlin + Mordred + Percival + Morgana 67 / 120 ≈ 0.5583 —

Table 9: Exact equilibrium values for 5- and 6-player Avalon. The values marked * were
also manually derived by Christiano (2018); we match their results. ‘—’: too large to solve.

In particular, when k = 1, the price of hidden roles is at worst n. This is in sharp contrast to the price of
communication and price of correlation in ATGs, both of which can be arbitrarily large even when n = 3 and
k = 1 (Basilico et al., 2017; Celli and Gatti, 2018).

4.6.2 Order of Commitment and Duality Gap
In Definition 4.8, when choosing the TME as our solution concept and defining the split-personality game,
we explicitly choose that ▲ should pick its strategy before ▼—that is, the team committing to a strategy is
the same one that has incomplete information about the roles. One may ask whether this choice is necessary
or relevant: for example, what happens when the TME problem (4) satisfies the minimax theorem? Perhaps
surprisingly, the answer to this question is that, at least with private communication, the minimax theorem
in hidden-role games only holds in “trivial” cases, in particular, when the hidden-role game is equivalent to
its public-role refinement (Definition 4.17).

Proposition 4.21. Let Γ be any hidden-role game. Define UVal′priv(Γ) identically to UValpriv(Γ),
except that ▼ commits before ▲—that is, in (4), the maximization and minimization are flipped.
Then UVal′priv(Γ) is equal to the TME value of PublicTeam(Γ) with communication—that is, the
equilibrium value of the zero-sum game in which teams are public and intra-team communication is
private and unlimited.

Proof. It suffices to show that team ▲ can always cause the teams to be revealed publicly if ▼ commits first.
Let s be a long random string. All members of team ▲ broadcast s publicly at the start of the game. Since ▼
commits first, ▼ cannot know or guess s if it is sufficiently long; thus, with exponentially-good probability,
this completely reveals the teams publicly. Then, using the private communication channels, team ▲ can play
a TMECom of PublicTeam(Γ).

Therefore, the choice of having ▲ commit to a strategy before ▼ is forced upon us: flipping the order of
commitment would ruin the point of hidden-role games.

4.7 Experimental Evaluation: Avalon
In this section, we apply Theorem 4.11 to instances of the popular hidden-role game The Resistance: Avalon
(hereafter simply Avalon). We solve various versions of the game with up to six players.

A game of Avalon proceeds, generically speaking, as follows. There are n players, ⌈n/3⌉ of which are randomly
assigned to team ▼ and the rest to team ▲. Team ▼ is informed. Some special rules allow players observe
further information; for example, Merlin is a ▲-player who observes the identity of the players on team ▼,
except the ▼-player Mordred, and the ▲-player Percival knows Merlin and Morgana (who is on team ▼), but
does not know which is which. The game proceeds in five rounds. In each round, a leader publicly selects a
certain number of people (defined as a function of the number of players and current round number) to go
on a mission. Players then publicly vote on whether to accept the leader’s choice. If a strict majority vote
to accept, the mission begins; otherwise, leadership goes to the player to the left. If four votes pass with
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no mission selected, there is no vote on the fifth mission (it automatically gets accepted). If a ▼-player is
sent on a mission, they have the chance to fail the mission. The goal of ▲ is to have three missions pass. If
Merlin is present, ▼ also wins by correctly guessing the identity of Merlin at the end of the game. Avalon
is therefore parameterized by the number of players and the presence of the extra roles Merlin, Mordred,
Percival, and Morgana.

Avalon is far too large to be written in memory: Serrino et al. (2019) calculates that 5-player Avalon has at
least 1056 information sets. However, in Avalon with ≤ 6 players, many simplifications can be made to the
zero-sum game given by Theorem 4.11 without changing the equilibrium. These are detailed in the appendix
of the full paper (Carminati et al., 2024b), but here we sketch one of them which has theoretical implications.
Without loss of generality, in the zero-sum game in Theorem 4.11, the mediator completely dictates the
choice of missions by telling everyone to propose the same mission and vote to accept missions, and ▼ can do
nothing to stop this. Therefore, team ▼ always has symmetric information in the game: they know each
others’ roles (at least when n ≤ 6), and the mediator’s recommendations to the players may as well be public.
Therefore, Avalon is already natively without loss of generality a game with a coordinated adversary in the
sense of Section 4.3.2, so the seemingly strong assumptions used in Definition 4.6 are in fact appropriate in
Avalon. Even after our simplifications, the games are fairly large, e.g., the largest instance we solve has 2.2
million infosets and 26 million terminal nodes.

Our results are summarized in Table 9. Games were solved using a CPU compute cluster machine with 64
CPUs and 480 GB RAM, using two algorithms:

1. A parallelized version of the PCFR+ algorithm (Farina et al., 2021c), a scalable no-regret learning
algorithm. PCFR+ was able to find an approximate equilibrium with exploitability < 10−3 in less than
10 minutes in the largest game instance, and was able to complete 10,000 iterations in under two hours
for each game.

2. An implementation of the simplex algorithm with exact (rational) precision, which was warmstarted
using incrementally higher-precision solutions obtained from configurable finite-precision floating-point
arithmetic implementation of the simplex algorithm, using an algorithm similar to that of Farina et al.
(2018). This method incurred significantly higher runtimes (in the order of hours to tens of hours), but
had the advantage of computing exact game values at equilibrium.

Table 9 shows exact game values for the instances we solved.

Findings. We solve Avalon exactly in several instances with up to six players. In the simplest instances
(Resistance or only Merlin), Christiano (2018) previously computed equilibrium values by hand. The fact
that we match those results is positive evidence of the soundness of both our equilibrium concepts and our
algorithms.

Curiously, as seen in Table 9, the game values are not “nice” fractions: this suggests to us that most of the
equilibrium strategies will likely be inscrutable to humans. The simplest equilibrium not previously noted
by Christiano, namely Merlin + 2 Mordreds with 5 players, is scrutable, and is analyzed in detail in the
appendix of the full paper (Carminati et al., 2024a).

Also curiously, having Merlin and two Mordreds (i.e., having a Merlin that does not actually know anything)
is not the same as having no Merlin. If it were, we would expect the value of Merlin and two Mordreds to be
0.3× 2/3 = 0.2 (due to the 1/3 probability of ▼ randomly guessing Merlin). But, the value is actually closer
to 0.28. The discrepancy is due to the “special player” implicit correlation discussed in Section 4.1.4.
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4.8 Conclusions and Future Research
In this paper, we have initiated the formal study of hidden-role games from a game-theoretic perspective.
We build on the growing literature on ATGs to define a notion of equilibrium, and give both positive and
negative results surrounding the efficient computation of these equilibria. In experiments, we completely solve
real-world instances of Avalon. As this paper introduces a new and interesting class of games, we hope that it
will be the basis of many future papers as well. We leave many interesting questions open.

1. From our results, it is not even clear that hidden-role equilibria and values can be computed in finite
time except as given by Theorem 4.12. Is this possible? For example, is there a revelation-principle-like
characterization for public communication that would allow us to fix the structure of the communication?
We believe this question is particularly important, as humans playing hidden-role games are often
restricted to communicating in public and cannot reasonably run the cryptographic protocols necessary
to build private communication channels or perform secure MPC.

2. Changing the way in which communication works can have a ripple effect on the whole paper. One
particular interesting change that we do not investigate is anonymous messaging, in which players can,
publicly or privately, send messages that do not leak their own identity. How does the possibility of
anonymous messaging affect the central results of this paper?

3. In this paper, we do not investigate or define hidden-role games where both teams have imperfect
information about the team assignment. What difference would that make? In particular, is there a
way to define an equilibrium concept in that setting that is “symmetric” in the sense that it does not
require a seemingly-arbitrary choice of which team ought to commit first to its strategy?
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Part II

Generalized Mechanism Design and Op-
timal Correlation via Zero-Sum Games
5 Polynomial-Time Optimal Equilibria with a Mediator

5.1 Introduction
Various equilibrium notions in general-sum extensive-form games are used to describe situations where the
players have access to a trusted third-party mediator, who can communicate with the players. Depending on
the power of the mediator and the form of communication, these notions include the normal-form (Aumann,
1974) and extensive-form correlated equilibrium (NFCE and EFCE) (von Stengel and Forges, 2008), the
normal-form (Moulin and Vial, 1978) and extensive-form (Farina et al., 2020) coarse-correlated equilibrium
(NFCCE and EFCCE), the communication equilibrium (Forges, 1986; Myerson, 1986), and the certification
equilibrium (Forges and Koessler, 2005).

Several of these notions, in particular the EFCE and EFCCE, were defined for mainly computational reasons:
the EFCE as a computationally-reasonable relaxation to NFCE, and the EFCCE as a computationally-
reasonable relaxation of EFCE. When the goal is to compute a single correlated equilibrium, these relaxations
are helpful: there are polynomial-time algorithms for computing an EFCE (Huang and von Stengel, 2008).
However, from the perspective of computing optimal equilibria—that is, equilibria that maximize the expected
value of a given function, such as the social welfare—even these relaxations fall short: for all of the correlation
notions above, computing an optimal equilibrium of an extensive-form game is NP-hard (von Stengel and
Forges, 2008; Farina et al., 2020).

On the other hand, notions of equilibrium involving communication in games have arisen. These differ from
the notions of correlation in that the mediator can receive and remember information from the players,
and therefore pass information between players as necessary to back up their suggestions. Certification
equilibria (Forges and Koessler, 2005) further strengthen communication equilibria by allowing players to
prove certain information to the mediator. To our knowledge, the computational complexity of optimal
communication or certification equilibria has never been studied. We do so in this paper. The main technical
result of our paper is a polynomial-time algorithm for computing optimal communication and certification
equilibria (the latter under a certain natural condition about what messages the players can send). This
stands in stark contrast to the notions of correlation discussed above.

To prove our main result, we define a general class of mediator-augmented games, each having polynomial
size, that is sufficient to describe all of the above notions of equilibrium except the NFCE37. We also build on
this main result in several ways.

1. We define the full-certification equilibrium, which is the special case in which players cannot lie to
the mediator (but can opt out of revealing their information). In this case, the algorithm is a linear
program whose size is almost linear in the size of the original game. As such, this special case scales
extremely well compared to all of the other notions.

2. We formalize notions for incorporating payments in the language of our augmented game. By using
37We do not consider the NFCE, because it breaks our paradigm, which enforces that the mediator’s recommendation be a

single action. In NFCE, the whole strategy needs to be revealed upfront. It is an open question whether it is possible to even
find one NFCE in polynomial time, not to mention an optimal one.
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payments, mediators can incentivize players to play differently than they otherwise would, possibly to
the benefit of the mediator’s utility function.

3. We define an entire family of equilibria using our augmented game, that includes as special cases
the communication equilibrium, certification equilibrium, NFCCE, EFCCE, and EFCE. From this
perspective, we show that other notions of equilibrium, such as extensive-form correlated equilibrium,
correspond to the mediator having imperfect recall. This shows that, at least among all these equilibrium
notions, the hardness of computation is driven by the mediator’s imperfect recall. We argue that,
for this reason, many stated practical applications of correlated equilibria should actually be using
communication or certification equilibria instead, which are both easier to compute (in theory, at least)
and better at modelling the decision-making process of a rational mediator.

4. We empirically verify the above claims via experiments on a standard set of game instances.

Applications and related work. Correlated and communication equilibria have various applications that
have been well-documented. Here, we discuss just a few of them, as motivation for our paper. For further
discussion of related work, especially relating to automated dynamic mechanism design and persuasion, see
the appendix of the full paper (Zhang and Sandholm, 2022a).

Bargaining, negotiation, and conflict resolution (Chalamish and Kraus, 2012; Farina et al., 2019b). Two
parties with asymmetric information wish to arrive at an agreement, say, the price of an item. A mediator,
such as a central third-party marketplace, does not know the players’ information but can communicate with
the players.

Crowdsourcing and ridesharing (Furuhata et al., 2013; Ma et al., 2021; Zhang et al., 2022b). A group of
players each has individual goals (e.g., to make money by serving customers at specific locations). The players
are coordinated by a central party (e.g., a ridesharing company) that has more information than any one of
the players, but the players are free to ignore recommendations if they so choose.

Persuasion in games (Kamenica and Gentzkow, 2011; Celli et al., 2020a; Mansour et al., 2022b; Gan et al.,
2022; Wu et al., 2022). The mediator (in that literature, usually “sender”) has more information than the
players (“receivers”), and wishes to tell information to the receivers so as to persuade them to act in a certain
way.

Automated mechanism design (Conitzer and Sandholm, 2002, 2004; Zhang and Conitzer, 2021; Zhang et al.,
2022c; Papadimitriou et al., 2022; Zhang et al., 2021; Kephart and Conitzer, 2015, 2021). Players have
private information unknown to the mediator. The mediator wishes to commit to a strategy—that is, set a
mechanism—such that players are incentivized to honestly reveal their information. In fact, in the appendix
of the full paper (Zhang and Sandholm, 2022a) we will see that we recover the polynomial-time Bayes-Nash
randomized mechanism design algorithm of (Conitzer and Sandholm, 2002, 2004) as a special case of our
main result.

Some of the above examples are often used to motivate correlated equilibria. However, when the mediator is
a rational agent with the ability to remember information that it is told and pass the information between
players as necessary, we will argue that communication or certification equilibrium should be the notion of
choice, for both conceptual and computational reasons.
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5.2 Preliminaries: Communication and Certification Equilibria
Here, we review definitions related to communication equilibria, following Forges (1986); Myerson (1986) and
later related papers.

Definition 5.1. Let S be a space of possible messages. A pure mediator strategy is a map d : S≤T → S,
where S≤T denotes the set of sequences in S of length at most T . A randomized mediator strategy (hereafter
simply mediator strategy) is a distribution over pure mediator strategies.

We will assume that the space of possible messages is large, but not exponentially so. In particular, we will
assume that {⊥} ∪ I ∪

⋃
hA(h) ⊆ S (i.e., messages can at least be nothing, information, or actions)38 and

that |S| ≤ poly(|H|). The latter assumption is mostly for cleanliness in stating results: we will give algorithms
that need S as an input that we wish to run in time poly(|H|).

A mediator strategy augments a game as follows. If the strategy is randomized, it first samples a pure strategy
d, which is hidden from the players. At each timestep t, a player reaches a history h at which she must act,
and observes the infoset I ∋ h. She sends a message st ∈ S to the mediator. The mediator then sends a
response d(s1, . . . , st), which depends on the message st as well as the messages sent by all other players prior
to timestep t. Then, the player chooses her action a ∈ A(h). We will call the sequence of messages sent and
received between the mediator and player i, the transcript with player i. A communication equilibrium39 is a
Nash equilibrium of the game Γ augmented with a mediator strategy. The mediator is allowed to perform
arbitrary communication with the players. In particular, the mediator is allowed to pass information from
one player to another. Further, the players are free to send whatever messages they wish to the mediator,
including false or empty messages. These two factors distinguish communication equilibria from notions of
correlated equilibria. In Section 5.3.4 we will discuss this comparison in greater detail.

A useful property in the literature on communication equilibria is the revelation principle (e.g., (Forges, 1986;
Myerson, 1986)). Informally, the revelation principle states that any outcome achievable by an arbitrary
strategy profile can also be achieved by a direct strategy profile, in which the players tell the mediator all
their information and are subsequently directly told by the mediator which action to play. In order to be a
communication equilibrium, the players still must not have any incentive to deviate from the protocol. That
is, the equilibrium must be robust to all messages that a player may attempt to send to the mediator, even if
in equilibrium the player always sends the honest message.

Forges and Koessler (2005) further introduced a form of equilibrium for Bayesian games which they called
certification equilibria. In certification equilibria, the messages that a player may legally send are dependent
on their information; as such, some messages that a player can send are verifiable. At each information set
I ∈ I, let SI ⊆ S denote the set of messages that the player at infoset I may send to the mediator. We will
always assume that I ∈ SI and ⊥ ∈ SI for all I. That is, all players always have the options of revealing
their true information or revealing nothing.

38A priori, although the messages are given these names, they carry no semantic meaning. The revelation principle is used to
assign natural meaning to the messages.

39Previous models of communication in games (Forges, 1986; Myerson, 1986; Forges and Koessler, 2005) usually worked with
a model in which players send messages, receive messages, and play moves simultaneously, rather than in sequence as in the
extensive-game model that we use. The simultaneous-move model is easy to recreate in extensive form: by adding further
“dummy nodes” at which players learn information but only have one legal action, we can effectively re-order when players ought
to communicate their information to the mediator.
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5.3 Extensive-Form S-Certification Equilibria
The central notion of interest in this paper is a generalization of the notion of certification equilibria (Forges
and Koessler, 2005) to extensive-form games.

Definition 5.2. Given an extensive-form game Γ and a family of valid message sets S = {SI : I ∈ I}, an
S-certification equilibrium is a Nash equilibrium of the game augmented by a randomized mediator, in which
each player at each information set I is restricted to sending a message s ∈ SI .

The existence of S-certification equilibria follows from the existence of Nash equilibria, which are the special
case where the mediator does nothing.

We will need one extra condition on the message sets, which is known as the nested range condition
(NRC) (Green and Laffont, 1977): if I ∈ SI′ , then SI ⊆ SI′ . That is, if a player with information I ′ can lie
by pretending to have information I, then that player can also emulate any other message she would have
been able to send at I. Equivalently, the honest message I should be the most certifiable message that a
player can send at infoset I. Our main result is the following.

Theorem 5.3. Let uM ∈ RZ be an arbitrary utility vector for the mediator. Then there is a polynomial-
time algorithm that, given a game Γ and a message set family S satisfying the nested range condition,
computes an optimal S-certification equilibrium, that is, one that maximizes Ez uM[z] where the
expectation is over playouts of the game under equilibrium.

In particular, by setting SI = S for all I, Theorem 5.3 implies that optimal communication equilibria can be
computed in polynomial time.

The rest of the paper is organized as follows. First, we will prove our main theorem. Along the way, we will
demonstrate a form of revelation principle for S-certification equilibria. We will then discuss comparisons
to other known forms of equilibrium, including the extensive-form correlated equilibrium (von Stengel and
Forges, 2008), and several other natural extensions of our model. Finally, we will show experimental results
that compare the computational efficiency and social welfare of various notions of equilibrium on some
experimental game instances.

5.3.1 Proof of Theorem 5.3: The Single-Deviator Mediator-Augmented Game

In this section, we construct a game Γ̂, with n + 1 players, that describes the game Γ where the mediator has
been added as an explicit player. This game has similar structure to the one used by Forges (1986, Corollary
2), but, critically, has size polynomial in |H|. This is due to two critical differences. First, the players are
assumed to either send ⊥, or send messages that mediator cannot immediately prove to be off-equilibrium. In
particular, if the player’s last message was I and the mediator recommended action a at I, the player must
send a message I ′ with σ(I ′) = Ia. If this is impossible, the player must send ⊥. Therefore, in particular,
we will assume that SI consists of only ⊥ and information sets I ′ at the same level as I. Second, only one
player is allowed to deviate. Therefore, the strategy of the mediator is not defined in cases where two or
more players deviate.

We now formalize Γ̂. Nodes in Γ̂ will be identified by tuples (h, τ , r) where h ∈ H is a history in Γ,
τ = (τ1, . . . , τn) is the collection of transcripts with all players, and r ∈ {rev, rec, act} is a stage marker
that denotes whether the current state is one in which a player should be revealing information (rev), the
mediator should be recommending a move (rec), or the player should be selecting an action (act). The
progression of Γ̂ is then defined as follows. We will use the notation τ [i·s] to denote appending message s to
τi.

• The root node of Γ̂ is (∅, (∅, . . . ,∅), rev).

• Nodes (z, τ , rev) for z ∈ Z are also terminal in Γ. The mediator gets utility uM[z], where u is the
mediator’s utility function as in Theorem 5.3. All other players i get utility ui[z].

• Nodes (h, τ , rev) for non-terminal h are decision nodes for the player i who acts at h.
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1. If i is chance, there is one valid transition, to (h, τ , act).

2. If some other player j ̸= i has already deviated (i.e., σj(h) ̸= τj)), there is one valid transition, to
(h, τ [i·I], rec) where I ∋ h.

3. If player i has deviated or no one has deviated, then player i observes the infoset I ∋ h, and selects
a legal message I ′ ∈ SI ∩ ({⊥} ∪N(τi)) to send to the mediator40. Transition to (h, τ [i·I ′], rev).

• At (h, τ , rec) where h ∈ Hi, the mediator observes the transcript τi and makes a recommendation a. If
τi contains any ⊥ messages, then a = ⊥. Otherwise, a is a legal action a ∈ A(I), where I is the most
recent message in τi. Transition to (h, τ [i·a], act).

• Nodes (h, τ , act) for non-terminal h are decision nodes for the player i who acts at h.

1. If i is chance, then chance samples a random action a ∼ p(·|h). Transition to (ha, τ , rev).

2. If some other player j ̸= i has already deviated, there is one valid transition, to (ha, τ , rec), where
a is the action sent by the mediator.

3. If player i has deviated or no one has deviated, then player i observes the transcript τi, and selects
an action a′ ∈ A(h). Transition to (ha′, τ , rev). The action a′ need not be the recommended
action.

Since at most one player can ever deviate by construction, and the length of the transcripts are fixed because
turn order is common knowledge, the transcripts τ can be identified with sequences σi of the deviated player, if
any. We will make this identification: we will use the shorthand hσi to denote the history (h, (σ−i(h), σi), rev),
and h⊥ for (h,σ(h), rev) (i.e., no one has deviated yet). Therefore, in particular, this game has at most
O(|H||Σ|) histories.

For each non-mediator player, there is a well-defined direct strategy ôi for that player: always report her
true information I ∋ h, and always play the action recommended by the mediator. The goal of the mediator
is to find a strategy x̂M for itself that maximizes its expected utility, subject to the constraint that each
player’s direct strategy is a best response—that is, find x̂M such that (x̂M, ô1, . . . , ôn) is a (strong) Stackelberg
equilibrium of Γ̂.

We claim that finding a mediator strategy x̂M that is a strong Stackelberg equilibrium in Γ̂ is equivalent to
finding an optimal S-certification equilibrium in Γ. We prove this in two parts. First, we prove a version of
the revelation principle for S-certification equilibria.

Definition 5.4. An S-certification equilibrium is direct if it satisfies the following two properties.

1. (Mediator directness) If the transcript τi of a player i is exactly some sequence of player i, and player i
sends an infoset I with σ(I) = τi, then the mediator replies with an action a ∈ A(I). Otherwise41, the
mediator replies ⊥.

2. (Player directness) In equilibrium, players always send their true information I, and, upon receiving an
action a ∈ A(I), always play that action.

Proposition 5.5 (Revelation principle for S-certification equilibria under NRC). Assume that S
satisfies the nested range condition. For any S-certification equilibrium, there is a realization-equivalent
direct equilibrium.

Omitted proofs can be found in the appendix of the full paper (Zhang and Sandholm, 2022a). Since direct
mediator strategies are exactly the mediator strategies in Γ̂, and the player strategies are only limited
versions of what they are allowed to do in S-certification equilibrium, this implies that, for any S-certification
equilibrium, there is a mediator strategy x̂M in Γ̂ such that (x̂M, ô1, . . . , ôn) is a Stackelberg equilibrium. We
will also need the converse of this statement.

40If τi contains any ⊥ messages, then we take N(τi) = ∅
41This condition is necessary because, if the mediator does not know what infoset the player is in, the mediator may not be

able to send the player a valid action, because action sets may differ by infoset.
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Proposition 5.6. Let x̂M be a strategy for the mediator in Γ̂ such that, in the strategy profile
(x̂M, ô1, . . . , ôn), every ôi for i ≠ M is a best response. Then there is an direct S-certification
equilibrium that is realization-equivalent to (x̂M, ô1, . . . , ôn).

Therefore, we have shown that the mediator strategies x̂M in Γ̂ for which (x̂M, ô1, . . . , ôn) is a Stackelberg
equilibrium in Γ̂ correspond exactly to optimal S-certification equilibria of Γ. Such a Stackelberg equilibrium
can be found by solving the following program:

max
x̂M∈co X̂M

∑
ẑ∈Ẑ

x̂M[ẑ]ûM[ẑ]p̂(ẑ)
∏

i∈[n]

ôi[ẑ]

s.t. max
x̂′

j
∈co X̂j

∑
ẑ∈Ẑ

x̂M[ẑ]ûi[ẑ]p̂(ẑ)
(
x̂′

j [ẑ]− ôj [ẑ]
)∏

i ̸=j

ôi[ẑ] ≤ 0 ∀j ∈ [n]
(5)

where co X̂i is the sequence-form mixed strategy space (Koller et al., 1994) of player i in Γ̂.

The only variables in the program are x̂i for each player i and the mediator. In particular, the direct strategies
x̂∗

i are constants. Therefore, the objective is a linear function, and the inner maximization constraints are
bilinear in x̂M and x̂j . Therefore, this program can be converted to a linear program by dualizing the
inner optimizations. The result is a linear program of size O(n|Ĥ| ) = O(n|H||Σ|). We have thus proved
Theorem 5.3.

5.3.2 Extensions and Special Cases
In this section, we describe several extensions and interesting special cases of our main result.

Full-certification equilibria. One particular special case of S-certification equilibria which is particularly
useful. We define a full-certification equilibrium as an S-certification equilibrium where SI = {⊥, I}.
Intuitively, this means that players cannot lie to the mediator, but they may withhold information. We
will call such an equilibrium full-certification. Removing valid messages from the players only reduces their
ability to deviate and thus increases the space of possible equilibrium strategies. As such, the full-certification
equilibria are the largest class of S-certification equilibria.

For full-certification equilibria, the size of game Γ̂ reduces dramatically. Indeed, in all histories hIa of Γ̂, we
must have I ⪯ h. Therefore, we have |Ĥ| ≤ |H|BD where B is the maximum branching factor and D is the
depth of the game tree, i.e., the size of Γ̂ goes from essentially quadratic to essentially quasilinear in |H|. The
mediator’s decision points in Γ̂ for a full-certification equilibrium are the trigger histories used by Zhang et al.
(2022b) in their analysis of various notions of correlated equilibria. Later, we will draw further connections
between full certification and correlation.

Changing the mediator’s information. In certain cases, the mediator, in addition to messages that it
is sent by the players, also has its own observations about the world. These are trivial to incorporate into
our model: simply change the information partition of the mediator in Γ̂ as needed. Alternatively, one can
imagine adding a “player”, with no rewards (hence no incentive to deviate), whose sole purpose is to observe
information and pass it to the mediator. For purposes of keeping the game small, it is easier to adopt the
former method. To this end, consider any refinement partition M of the mediator infosets in Γ̂, and consider
the game Γ̂M created by replacing the mediator’s information partition in Γ̂ with M. Then we make the
following definition.

Definition 5.7. An (S,M)-certification equilibrium of Γ is a mediator strategy x̂M in Γ̂M such that, in the
strategy profile (x̂M, x̂∗

1, . . . , x̂∗
n), every oi for i ̸= M is a best response.

(S,M)-certification equilibria may not exist: indeed, if M is coarser than the mediator’s original information
partition in Γ̂, then the mediator may not have enough information to provide good recommendations under
the restrictions of Γ̂. This can be remedied by allowing payments (see the appendix of the full paper (Zhang
and Sandholm, 2022a)), or by making the assumption that the mediator at least knows the transcript of the
player to whom she is making any nontrivial recommendation:
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Definition 5.8. A mediator partition M is direct if, at every mediator decision point (h, τ , rec), so long as
|A(h)| > 1, the mediator knows the transcript of the player acting at h. M is strongly direct if the mediator
also observes the transcript when |A(h)| = 1.

The condition |A(h)| > 1 in the definition allows the mediator to possibly not observe the full information of
a player if she does not need to make a nontrivial recommendation to that player. In particular, this allows
players to sometimes have information that they only partially reveal to the mediator, so long as the player
does not immediately need to act on such information.

Coarseness. In literature on correlation, coarseness refers to the restriction that a player must obey any
recommendation that she receives (but may choose to deviate by not requesting a recommendation and
instead playing any other action). Normal-form coarseness further adds the restriction that players can only
choose to deviate at the start of the game—the mediator essentially takes over and plays the game on behalf
of non-deviating players. These notions can easily be expressed in terms of our augmented game, therefore
also allowing us to express coarse versions of our equilibrium notions as augmented games.

5.3.3 The Gap between Polynomial and Not Polynomial
If players cannot send messages to the mediator at all, and the mediator has no other way of gaining any
information, we recover the notion of autonomous correlated equilibrium (ACE). It is NP-hard to compute
optimal ACE, even in Bayesian games (see e.g., von Stengel and Forges (2008)).

When M is direct and perfect recall, computing an optimal direct (S,M)-certification equilibrium can be
done in polynomial time using our framework. When S obeys NRC andM satisfies a stronger condition42, the
proof of the revelation principle (Propositions 5.5 and 5.6) works, and the resulting equilibrium is guaranteed
to be optimal over all possible equilibria including those that may not be direct.

If NRC does not hold, one can still solve the program (5), and the solution is still guaranteed to be an
optimal direct equilibrium by Proposition 5.6. However, it is not guaranteed to be optimal over all possible
communication structures. Indeed, Green and Laffont (1977, Theorem 1) give an instance in which, without
NRC, there can be an outcome distribution that is not implementable by a direct mediator. Our program
cannot find such an outcome distribution. The counterexample does not preclude the possibility of efficient
algorithms for finding optimal certification equilibria in more general cases, but does give intuition for why
NRC is crucial to our construction.

We could also consider changing the mediator’s information partition so that the mediator does not have
perfect recall. This transformation allows us to recover notions of correlation in games. Indeed, if we start
from the full-certification equilibrium and only allow the mediator to remember the transcript with the player
she is currently talking to, we recover EFCE. Adding coarseness similarly recovers EFCCE and NFCCE. In
this setting, the inability to represent the strategy space of an imperfect-recall player may result in the loss of
efficient algorithms.

42Roughly speaking, this condition is that players should not be able to cause the mediator to gain information apart from
their own messages by sending messages. It holds for all notions we discuss in this paper. Formalizing the general case is beyond
the scope of this paper.
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when can players deviate?
ex ante ex interim

coarse not coarse

mediator remembers only
current player’s transcript

lying possible NFCCE (Moulin and Vial, 1978) private coarse comm private comm
withholding only EFCCE (Farina et al., 2020) EFCE (von Stengel and Forges, 2008)

mediator information advantage Bayes NFCCE (Celli et al., 2020a) Bayes EFCCE Bayes EFCE
lying possible NF coarse full-cert

(“mediated” (Monderer and Tennenholtz, 2009))
coarse comm comm (Forges, 1986; Myerson, 1986)

mediator perfect recall withholding only coarse full-cert full-cert (Forges and Koessler, 2005)
mediator information advantage Bayes PI-NFCCE Bayes PI-EFCCE Bayes PI-EFCE

Table 10: A whole family of equilibria. See Section 5.3.4 for an explanation of the terms used
in the table. NF, EF, and PI stand for normal-form, extensive-form, and perfect-information
respectively.

5.3.4 A Family of Equilibria
By varying

1. what the mediator observes,

2. whether the mediator has perfect recall,

3. whether the players can lie or only withhold information, and

4. when and how players can deviate from the mediator’s recommended actions,

we can use our framework to define a family consisting of 16 conceptually different equilibrium notions. More
can be generated by considering other variations in this design space, but we focus on the extreme cases in
the table. Some of these were already defined in the literature; the remaining names are ours. The result is
Table 10. An inclusion diagram for these notions can be found in Figure 11.

In the table, ex ante means that players have only a binary choice between deviating (in which case they can
play whatever they want) and playing (in which case they must always be direct and obey recommendations).
With ex ante deviations, it does not matter whether lying is allowed because we can never get to that stage:
either the player deviates immediately and never communicates with the mediator, or the player is direct. If
the mediator only remembers the current active player’s information, and players cannot lie, withholding and
coarsely deviating are the same.

Mediator information advantage means that the mediator always learns the infoset of the current active player,
and therefore requires no messages from the players. This is equivalent to forcing players to truthfully report
information. A mediator with information advantage may still not have perfect information—for example, it
will not know whether a player (or nature) has played an action until some other player observes the action.
In this setting, the mediator may also have extra private information (known to none of the players), leading
to the setting of Bayesian persuasion (Kamenica and Gentzkow, 2011). In extensive-form games, there are
two different reasonable notions of persuasion: one that stems from extending correlated equilibria, and one
that stems from extending communication equilibria. The distinction is that, in the former, the mediator
has imperfect recall. For a more in-depth discussion of Bayesian persuasion, see the appendix of the full
paper (Zhang and Sandholm, 2022a).

Our framework allows optimal equilibria for all notions in the table to be computed. For perfect-recall
mediators, this is possible in polynomial time via the sequence form; for imperfect-recall mediators, the
problem is NP-hard, in general, but—as we will elaborate on later—the team belief DAG of Zhang et al.
(2023b) can be used to recover fixed-parameter algorithms.
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Nash

normal-form
correlated

autonomous
correlated

private untimed
communication

(linear correlated)

private
communication

private coarse
communicationEFCE

EFCCE

NFCCE

communication

coarse
communicationfull-certification

coarse
full-certification

normal-form coarse
full-certification

Bayes
PI-EFCE

(“information
design”)

Bayes
PI-EFCCE

Bayes
PI-NFCCE

Bayes
EFCE

Bayes
EFCCE

Bayes
NFCCE

Legend:
Mediator gains perfect recall
Mediator gains more information
Players lose the ability to disobey recommendations
Players lose the ability to lie

Figure 11: Inclusion diagram for the equilibrium notions discussed in Section 5.3.4. Arrows
indicate subset relationships. Autonomous correlated equilibria (Forges, 1986; von Stengel
and Forges, 2008) are equilibria in which the mediator cannot receive information from the
players but still only gives recommendations one timestep at a time. (Confusingly, Forges
(1986) calls these extensive-form correlated equilibria, and only in von Stengel and Forges
(2008) is the present terminology adopted). Untimed private communication equilibria are
equivalent to linear-swap correlated equilibria, and are discussed in Section 10.

70



6 Optimal Correlated Equilibria in General-Sum
Games: Fixed-Parameter Algorithms, Hardness, and
Two-Sided Column-Generation

6.1 Introduction
In this section, we will study the problem of computing optimal correlated equilibria, in particular, how this
computational problem fits into the framework introduced in the previous section.

Our focus is on computing optimal NFCCEs, EFCCEs, and EFCEs, which are the equilibria that maximize a
given linear objective function. Computing optimal correlated equilibria, in any of these notions, is NP-hard
in the size of the game tree, even in two-player games with chance nodes, or three-player games without
chance nodes (von Stengel and Forges, 2008). Some special cases are known to be solvable efficiently. von
Stengel and Forges (2008) show that in two-player games without chance moves, optimal equilibria in all
three equilibrium notions can be computed in polynomial time. More recently, Farina and Sandholm (2020)
extend the positive result to so-called triangle-free games, which strictly include all two-player games with
public chance actions.

The problem of computing one EFCE (and, therefore, one NFCCE/EFCCE) can be solved in polynomial
time in the size of the game tree (Huang and von Stengel, 2008) via a variation of the Ellipsoid Against Hope
algorithm (Papadimitriou and Roughgarden, 2008; Jiang and Leyton-Brown, 2015). Moreover, there exist
decentralized no-regret learning dynamics guaranteeing that the empirical frequency of play after T rounds is
an O(1/

√
T )-approximate EFCE with high probability, and an EFCE almost surely in the limit (Celli et al.,

2020b; Farina et al., 2021b). Using regret minimizers to play large multi-player games has already led to
superhuman practical performance in multi-player poker (Brown and Sandholm, 2019b). As stated above,
however, computing optimal equilibria is much harder.

Contributions and paper structure. This paper makes a number of contributions related to the
computation of optimal (i.e., one that maximizes a given linear objective function, such as social welfare
or any weighted sum of expected player utilities) NFCCE, EFCCE, and EFCE in general multi-player
general-sum extensive-form games. At a high level, we distinguish between conceptual, complexity-theoretic,
and algorithmic contributions.

- Conceptual contributions. At the conceptual level, we show that the problem of computing an optimal
NFCCE, EFCCE, and EFCE, can be converted into the problem of computing an optimal strategy for
a player in a suitably-constructed game. The equivalent game, which we call a mediator-augmented
game, explicitly captures the decision problem that each player would face if the correlation device were
an explicit player in the game, called the mediator. The action space of the mediator depends on the
solution concept being analyzed: NFCCE, EFCCE, or EFCE.

While the mediator-augmented formalism greatly simplifies the treatment—providing what we hope
will be an important conceptual framework for further analysis of these solution concepts—this game
reformulation preserves the computational aspects of computing an optimal equilibrium, including their
hardness aspects. Indeed, a key point regarding the mediator-augmented game is that the mediator
faces imperfect recall. This is because the mediator cannot leak information across the players, so the
mediator has to forget what it has observed about the other players when making a recommendation to
a given player. Otherwise, the mediator’s recommendations would not form a correlated profile at all,
much less any equilibrium.

Optimizing for the strategy of an imperfect-recall player (here, the mediator) is known to be hard (Koller
and Megiddo, 1992; Chu and Halpern, 2001). To tackle the issue, in our paper we study effective
extended formulations (in the mathematical programming sense, e.g., (Conforti et al., 2010)) of the
decision space of the mediator, by removing the imperfect recall at the expense of a (worst-case
exponential) increase in the number of decision points for the mediator player.
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- Complexity-theoretic contributions. We then proceed to show how certain recent results regarding
parameterized complexity of imperfect-recall decision problems can be applied to the mediator-augmented
game. A critical technical step in applying those results lies in characterizing the complexity of the
public states of the decision problem faced by the mediator in the mediator-augmented game as a
function of the original (not mediator-augmented) input game. Specifically, we give bounds on the size
of the public states of mediator-augmented games for each of the solution concepts as a function of the
depth d, the maximum branching factor b, and a suitably-defined information-complexity k of the input
game that is independent of the solution concept. However, our overall complexity bounds are different
depending on the solution concept: the bound for NFCCE in particular does not depend exponentially
on the depth of the game, whereas the bounds for EFCCE and EFCE do. We show that this difference
is inherent, therefore contributing new complexity-theoretic separations between the solution concepts.

i. We show that an optimal EFCE in an extensive-form game can be computed by solving a linear
program of size O∗((bd)k), where the notation O∗ suppresses factors polynomial in the size of
the game (Theorem 6.15). For optimal EFCCE and optimal NFCCE, we establish bounds of
O∗((b + d− 1)k) and O∗((b + 1)k), respectively.

ii. In games with public player actions, we show that the bounds for NFCCE and EFCCE can be
further improved to O∗(3k) and O∗(dk), respectively (Theorem 6.17). We show that the bound for
EFCE cannot be improved in this manner.

iii. In two-player games with public chance actions, our algorithm runs in polynomial time (Theo-
rem 6.19) for all three solution concepts. The problem in this setting had already been shown to
be solvable in polynomial time using a different technique by Farina and Sandholm (2020); we
match their results and discuss the relationship between our algorithm and theirs in Section 6.6.1.

iv. We show that the gap between the NFCCE bound and the EFCCE and EFCE bounds is fundamen-
tal. Matching the bound for NFCCE—in particular, removing the dependence on d—is impossible
for EFCCE and EFCE under standard complexity assumptions, demonstrating a fundamental
complexity-theoretic gap for coarse correlation between normal and extensive form (Theorem 6.22).

- Algorithmic contributions. We propose two main algorithms for computing optimal correlated equilibria
in all three solution concepts.

i. We operationalize the positive complexity results established above (Theorems 6.15, 6.17 and 6.19)
via Algorithm CorrelationDAG. It computes an optimal strategy for the mediator in the mediator-
augmented game via linear programming. At its core, the algorithm is based on the idea that the
imperfect-recall strategy space of the mediator is the projection of the set of flows in a suitable
high-dimensional directed acyclic graph (DAG), called the team belief DAG (Zhang et al., 2023b).
To our knowledge, this characterization of the complicated polytope of feasible correlated equilibria
as the projection of a simpler set of flows in a higher dimension is the first example of an extended
formulation (in the mathematical programming sense, e.g., (Conforti et al., 2010)) for these solution
concepts.

One cannot directly apply the fixed-parameter results of Zhang et al. (2023b), as that would result
in a worse bound. Instead, the above results are proven by carefully analyzing the size of the
resulting construction with the special structure of the mediator-augmented games in mind.

ii. We propose a new practical approach to computing optimal correlated equilibria which we call
two-sided column generation (deferred to full paper (Zhang et al., 2024c)). We start by deriving an
LP formulation based on the strategy polytope of von Stengel and Forges (2008) and on the notion
of semi-randomized correlation plan introduced by Farina et al. (2021a) in the context of team
games. In the latter of those two prior approaches, one player is chosen to play a normal-form
strategy and the other plays a mixed (sequence-form) strategy. Our approach improves upon this
by allowing the master LP to select which player is chosen to play the mixed strategy, thereby
increasing the space of correlation plans that can be represented for any given support, and leading
to a tighter master problem. In practice, we find that this change yields a speed improvement over
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Figure 12: An example game, between two players ▲ (P1) and ▼ (P2). The root node is a
chance node, at which chance moves uniformly at random. Dotted lines connect nodes in the
same information set. Bold lowercase letters are the names of nodes. We will refer to infosets
by naming all the nodes within them; for example, b and de are infosets. At terminal nodes,
the utility of ▲ is listed below the name of the node. ▼ has utility zero at every terminal
node, and in this game the only role of ▼ is to incentivize ▲ to act in a certain way.

the algorithm of Farina et al. (2021a) in almost all of the games tested, and this speed improvement
can be greater than two orders of magnitude.

Our two solving techniques are complementary: where the parameter k is small, writing out the DAG is
superior; where it is large, the two-sided column generation is faster and more frugal in its memory usage.
Furthermore, the value of k can be easily computed, enabling an efficient choice between these two
approaches. In experiments (deferred to full paper (Zhang et al., 2024c)), we demonstrate state-of-the-art
practical performance compared to prior state-of-the-art techniques with at least one, and sometimes
both, of our techniques. We also introduce two new benchmark games: a 2-vs-1 adversarial team game
we call the tricks game which is the trick-taking (endgame) phase of the card game bridge, and the
ride-sharing game in which two drivers seek to earn points by serving requests across a road network
modeled as an undirected graph. In the tricks game, we demonstrate empirically that, even for small
endgames with only three cards per player remaining, relaxing the game to be perfect information—as
so-called double dummy bridge endgame solvers do (e.g., (Ginsberg, 1999))—causes incorrect solutions
and game values to be generated, demonstrating the need for imperfect-information game analysis.

6.2 Preliminaries: Correlated Equilibria in Games
Most notions of correlated equilibria in extensive-form games, including normal-form coarse correlated
equilibrium (NFCCE), extensive-form coarse correlated equilibrium (EFCCE), and extensive-form correlated
equilibrium (EFCE), can be thought of as correlated strategies of play that can be enforced by a mediator. The
mediator first computes and publicly announces a correlated profile ξ. Then, privately, the mediator selects a
profile x ∼ ξ. Then, whenever a player i reaches an infoset I, the mediator gives a recommendation that i play
xi(I). The player may also choose to deviate, in which case they do not need to follow the recommendations
of the mediator, but the mediator also no longer gives recommendations for the remainder of the game. The
different notions of correlation are separated by what types of deviations are allowed (see also Figure 13).

• In NFCCE, a player may only deviate at the very beginning of the game. If she chooses not to deviate,
she must follow all mediator recommendations for the whole game.

• In EFCCE, a player may deviate at each of her infosets before seeing a recommendation. However, if
she chooses not to deviate, she must play the recommended action.

• In EFCE, a player may deviate at each of her infosets after seeing a recommendation, by instead playing
a different action.
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Figure 13: Comparison of different notions of correlation in extensive-form games.

The fourth notion of equilibrium, called normal-form correlated equilibrium (NFCE), is often known as simply
the correlated equilibrium. In NFCE, the mediator tells each player her entire pure strategy xi at the start of
the game, at which point the player may choose to deviate. It is known computing optimal NFCEs is NP-hard
even in two-player games without chance nodes (unlike for the three notions we study in this paper) (von
Stengel and Forges, 2008), making it a distinctly difficult problem that is out of the scope of this paper.
Thus, throughout this paper, we use “correlated equilibrium” to generically refer to any of the three notions
of correlated equilibrium that we investigate.

Triggers. To formalize these notions, we use the language of deviations introduced by Gordon et al. (2008).
Each deviation consists of a trigger and a continuation strategy, which specifies the behaviour of the player
when they decide to deviate from the mediator’s recommendation. The trigger determines the point of the
game in which the deviating player stops following the recommendation to start playing as prescribed by the
continuation strategy. Each of the solution concepts that we consider has a different set of triggers. In an
NFCCE each player is allowed to deviate only at the beginning of the interaction, before any recommendation
is observed. Therefore, each player i will have the empty sequence ∅i as their trigger. In an EFCCE triggers
are the information sets of the game, while in an EFCE players may get triggered after observing a specific
action recommendation at a specific information set of the game.

Definition 6.1. A trigger τ is:

• for NFCCE, the empty sequence ∅i for some player i ∈ [n];

• for EFCCE, an infoset; and

• for EFCE, a sequence.

Given a solution concept c ∈ {NFCCE, EFCCE, EFCE}, we denote by T c the set of all triggers for that
concept, and T c

i the set of all triggers of player i. Given a trigger τ ∈ T c, we use τ̄ to denote where τ can be
activated. That is, τ̄ = I if τ = Ia is a non-root sequence, or else τ̄ = τ . We must make this distinction
because EFCE triggers are activated not by reaching a part of a game tree, but by receiving a recommendation
a after reaching a part of the game tree. We use Στ̄

i to denote the set of all sequences σ ⪰ τ̄ of player i.

A (pure) continuation x′
i ∈ {0, 1}Στ̄

i following a trigger τ of player i is a pure strategy defined on all infosets
I ⪰ τ̄ . In sequence form, x′

i is indexed by sequences σ ⪰ τ̄ , and x′
i[σ] = 1 if the player plays all actions on

the path from τ̄ to σ. Mixed continuation strategies are defined analogously.
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Deviations. A pair (τ,x′
i), consisting of a trigger τ of player i and a pure continuation x′

i following τ̄ ,
defines a deviation ϕ(τ,x′

i) : Xi → Xi in the following manner: ϕ(τ,x′
i)(x) is the pure strategy that plays

according to the original strategy xi unless it prescribes τ , in which case it replaces it strategy with the
continuation x′

i wherever the latter is defined. Formally,

ϕ(τ,x′
i)(x)[σ] :=

{
x′

i[σ] if I ⪰ τ̄ and xi[τ ] = 1
xi[σ] otherwise

Definition 6.2. Given a correlated profile µ, a deviation ϕ of a player i is profitable if the deviating player
improves its expected utility: Ex∼µ ui(ϕ(xi),x−i) > Ex∼µ ui(x).

Definition 6.3. NFCCEs, EFCCEs, and EFCEs are correlated profiles µ that have no profitable deviations
of their respective types.

Here, in deciding whether to deviate, the players have common knowledge of the correlated profile µ from
which their recommendations are drawn.

Given an objective function g : Z → R, we say that an equilibrium µ is optimal with respect to an objective
g : Z → R if µ maximizes the expected objective value Ex∼µ,z∼x g(z) among all equilibria of the same notion.

Remark 6.4. The number of triggers available to a given player will play a fundamental role in the complexity
of computing a solution according to each of the three solution concepts. In particular, for NFCCE, each
player has only one trigger (∅i), whereas for EFCCE and EFCE, the number of triggers for each player
depends on the depth of the game. We will see in Section 6.5 that this difference results in a fundamental
gap: under reasonable assumptions, an optimal NFCCE can be computed faster than an optimal EFCCE or
an optimal EFCE.

6.3 Example of Solution Concepts
In this section, we give an example that illustrates the difference between NFCCE, EFCCE, and EFCE.

Consider the extensive-form game in Figure 12.

Example 6.5. As an example, consider the example game of Figure 12. The game has two players
(n = 2), whose nodes are pictorially marked with ▲ for Player 1 and ▼ for Player 2 respectively, and
19 nodes (denoted a through s), of which nine (a through i) are nonterminal. The root node is a chance
node, at which the chance player moves uniformly at random. Being the only chance node, it follows
that H0 = {a}. Player 1 (▲) observes the outcome of the chance node, and can pick between a left or
a right action. Player 2 (▼) however does not observe the outcome of the chance node; rather, the
player only observes the choice of Player 1. This imperfect knowledge of the state is encoded by the
information partition I2 of Player 2, which contains the two information sets {{d, e}, {f, g}}, denoted
in the figure with dotted lines connecting the nodes in the same information set. If the game hits
state d, then Player 1 (▲) gets to play a second move. However, Player 1 will not observe the action
chosen by Player 2 at d; this is captured again by the information set {h, i}. Nodes b and c do not
bear any uncertainty, and are therefore singleton elements in their corresponding information sets. In
summary, the information partitions of the players are I1 = {{b}, {c}, {h, i}} and I2 = {{d, e}, {f, g}}.
At terminal nodes, the payoffs for ▲, ▼ are listed below the node. ▼ has utility zero at every terminal
node.

This game represents a signalling game between two players, ▲ and ▼. ▼ has no rewards and will therefore
never have incentives to deviate from recommendations. ▲ scores a point if ▼ plays the same action as chance
played at the root, but chance’s action is only privately revealed to ▲, so ▼ relies on ▲ to signal the chance
action through ▲’s own action. ▲ also has the opportunity to receive a bonus point for guessing ▼’s action in
case d is reached.
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We will refer to the pure profiles in this game using the notation bcdfh , where the letters indicate which
actions were played at the respective infosets containing those nodes. For example, LRLRL means that ▲
plays left at b, right at c, and left at infoset hi; while ▼ plays left at de and right at fg—in particular, ▲
copies chance, and ▼ copies ▲. If ▲ plays right at b, we leave ▲’s action at hi unspecified since it is irrelevant;
for example, RLRL is a valid pure strategy.

We make the following observations about our example game.

• The correlated profile µ1 := 1
2 LRLRR + 1

2 RLRL is an NFCCE: ▲ is getting utility 1, which is larger
than any utility it can get by unilaterally deviating without seeing any recommendations: since ▼’s
marginal strategy is uniform random, a best unilateral deviation for ▲ is to always play left, securing
expected utility 3/4. However, µ1 is not an EFCCE, because ▲ can profitably deviate at trigger hi by
playing left instead of right. This deviation cannot be expressed as an NFCCE deviation, because it
requires ▲ to follow recommendations at b and c.

• The correlated profile µ2 := 1
2 LRLRL + 1

2 RRRR is an EFCCE. ▲ still gets total expected utility 1.
▲ is already getting the optimal utility at c and hi; and at b, ▲ is currently getting a conditional utility
of 1, and she cannot improve upon this without seeing the recommendation at b. However, µ2 is not an
EFCE, because ▲ can profitably deviate upon being recommended to play right at b by instead playing
left at b and right at hi. This deviation cannot be expressed as an EFCCE deviation, because, in the
deviation, ▲ conditions her action at infoset hi on the recommendation that she received at b.

• The pure profile LRLRL is an EFCE (in fact, being uncorrelated, it is a Nash equilibrium).

6.4 Unifying Correlated Solution Concepts via Mediator-
Augmented Games

As mentioned in the previous section and summarized in Figure 13, different correlated solution concepts for
extensive-form games differ in what the mediator (correlation device) reveals to the players, and whether the
players’ choices to commitment to follow the recommended behavior happen before or after observing the
recommendation. These differences not only materialize in different equilibrium sets, but—as we will show
later in this paper—also in complexity barriers that separate the solution concepts. Consequently, a unified
treatment of these solution concepts needs to be approached with care.

In this section, we define augmented games in which the mediator is made explicit, which will be pivotal to
our main results. Prior to presenting a precise formalization of the notion of augmented game, we provide
some intuition about how the game is constructed, using the illustrative example in Figure 12. During
this phase, our primary objective is to provide a straightforward intuition about the construction process,
deliberately omitting certain significant details that will be formally defined in Definition 6.6. The augmented
game explicitly represents players’ choices regarding whether to adhere to mediators’ recommendations or to
deviate from them. Consequently, the augmented games will have different structures depending on which
solution concept is desired—we will define one augmented game Γc for each of our target solution concepts
c. Figure 14 summarizes the main connections between the computation of an optimal correlated concept
c (for instance, EFCE) in the original game Γ, and the computation of a Stackelberg equilibrium in the
mediator-augmented game Γc corresponding to c. Figure 15 depicts the augmented games derived from the
example of Figure 12 for the three solution concepts of interest.

In all three augmented games, the mediator has imperfect recall. This is crucial to correctly capture the
correlated solution concepts. The imperfect recall is necessary for the one-to-one correspondence between
mixed strategies for the mediator in the augmented game, and correlated profiles of the players in the
original game. Intuitively, this is because the mediator’s decisions in the augmented game correspond to
recommendations in the original game, and therefore the mediator must pick one and only one recommendation
in each information set. Thus, the mediator must have one infoset in the augmented game corresponding to
each infoset in the original game. If the mediator were to have perfect recall, it would have the ability to
“break” information sets by sending recommendations to a player that depend on information not known to
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Mediator-augmented game Γc Original game Γ

• Strategy for mediator ξ • Correlation plan
• Strategy for deviator player xc

i • Deviation strategy from recommendation
• Obedient strategy for deviator oi • Identity deviation (i.e., no deviation)
• Utility of mediator g • Optimization objective (e.g., social welfare)
• Utility of deviator i • Utility of i in Γ
• ξ such that (oi)i∈[n] is a Nash strategy profile • Solution concept c (e.g., EFCE)
• Stackelberg equilibrium (solution to (6)) • Optimal c (e.g., welfare-maximizing EFCE)

Figure 14: Correspondence between notions in the mediator-augmented game, and notions
in the original game.

that player. Therefore, there could be a strategy for the mediator that does not correspond to a strategy
profile in the original game.

NFCCE. In the case of NFCCE (Figure 15, top), the augmented game has an initial phase in which ▲
and ▼ decide whether to deviate or obey to the mediator. Only one player is allowed to deviate in the
game. When player ▲ (resp., ▼) deviates, all subsequent infosets will belong to either ▲ (resp., ▼) or
to the mediator. The mediator takes decisions on behalf of the obedient player. If both players are
obedient (see the subtree with leaf nodes p,q,r,s,j,k,l,m,n,o), then all decisions after the initial phase are
taken by the mediator.

EFCCE. In the case of EFCCE (Figure 15, middle) we can reason as follows: starting from the root of the
original game Γ, we replace each information set of player ▲ or ▼ with three new infosets. The first
one is a parent infoset modelling the decision of the player to obey or to deviate at the original infoset
in Γ. The two children information sets encode the decision to be taken at the original infoset of Γ
being replaced. The new infoset following from the decision of the player to obey (at the parent infoset)
belongs to the mediator, who takes the action on behalf of the player. The new infoset following from
the decision of the player to deviate (at the parent infoset) belongs to the deviating player, and it
allows them for choosing the desired deviation. As before, after one player deviated, all the subsequent
information sets belong to that player or to the mediator.

EFCE. In the case of EFCE (Figure 15, bottom), each of the original infosets I of Γ is duplicated and
preceded by an information set of the mediator explixitly encoding the recommendation being issued at
I. After observing the recommendation, the player decides whether to deviate or not. We note that
actions within the same mediator’s information set can represent recommendations as well as actions
taken on behalf of the player. This is contingent upon whether the other player previously made a
deviation or not. The information available to the mediator when recommending actions or acting on
behalf of a player remains identical to what the player would have had in the original game.

Following this intuition, given a game Γ, we define the augmented game Γc corresponding to solution concept
c as follows.

Definition 6.6. Given an extensive-form game Γ, a solution concept c, and an objective function g : Z → R,
the augmented game Γc is defined as follows.

• Players. Γc has n + 1 players: the n players in Γ, and a mediator.

• Histories. Unless otherwise stated, histories in Γc are identified with tuples (h, a, τ), where:

• h is a history in Γ,

• a is either nothing (⊥), a special symbol ∗, or an action a ∈ A(h), and

• τ is either nothing (⊥) or a trigger.

Intuitively, the three components of the history represent the following.
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• h is the true history of the game, representing the actions that have been taken by the players.

• a is the recommendation from the mediator at the current infoset. ⊥ means that the mediator has
yet to make a recommendation. ∗ means that the mediator has not given a recommendation.

• τ represents the trigger, if any, that has been activated. Since we need only consider deviations of
one player at a time, there can be at most one active trigger—⊥ means there is no active trigger.

• Root node and NFCCE preplay phase. If c ̸= NFCCE, the root node of Γ is (∅,⊥,⊥). If c = NFCCE,
there is a pre-play phase in which each of the n players, in order, chooses whether to deviate or not.
Only one player may deviate: if player i deviates, then players j > i are forced to not deviate. Hence
this pre-play phase is a tree with n + 1 layers and n + 1 leaves. The leaf in which player i deviates is
(∅,⊥,∅i), and the leaf in which no player deviates is (∅,⊥,⊥).

• Terminal nodes. If z is terminal in Γ, then (z,⊥, τ) is terminal in Γc for any τ . At terminal node z,
each player i receives utility ui(z), and the mediator receives utility g(z).

• Chance nodes. If h is a chance node in Γ, then for any τ , (h,⊥, τ) is also a chance node in Γc with the
same chance probabilities. If c = NFCCE, the next node is (ha,⊥, τ). If c ̸= NFCCE, the next node is
a dummy node at which the sole action leads to (ha,⊥, τ).43

• Player nodes, part 1. Let (h,⊥, τ) be a history of Γc such that h ∈ Hi and i ≠ 0. The structure of the
game depends on c:

• c = NFCCE: If τ = ∅i, then player i observes the infoset I ∋ h and picks an action a ∈ A(h).
Otherwise, the mediator acts by picking an action a ∈ A(h). The next node is (ha,⊥, τ).

• c = EFCCE: If τ ̸= ⊥, then (h,⊥, τ) is a chance node with only one action, leading to node
(h, ∗, τ). If τ = ⊥, then player i observes the infoset I ∋ h decides whether or not to deviate. If
player i deviates, then the next node is (h, ∗, I). Otherwise, the next node is (h, ∗,⊥).

• c = EFCE: If τ is a trigger of player i, then (h,⊥, τ) is a chance node with only one action, leading
to (h, ∗, τ). Otherwise, the mediator selects an action a ∈ A(h), and the next node is (h, a, τ).

• Player nodes, part 2. Let (h, a, τ) be a history of Γc such that h ∈ Hi and i ≠ 0, and a ̸= ⊥. The
structure of the game again depends on c:

• c = NFCCE: This is impossible: by construction a = ⊥ always.

• c = EFCCE: if τ is a trigger of player i, then player i selects an action a ∈ A(h). Otherwise, the
mediator selects an action a ∈ A(h). In either case the next node is (ha,⊥, τ).

• c = EFCE: if τ ̸= ⊥ is a trigger not belonging to player i, then (h, a, τ) is a chance node with
a single action, leading to (ha,⊥, τ). Otherwise, player i observes the infoset I ∋ h and action
recommendation a, and selects an action a′ ∈ A(h). If a′ = a or a = ∗, then the next node is
(ha,⊥, τ); otherwise, the next node is (ha′,⊥, Ia).

• Information. Players i other than the mediator have perfect recall, and their observations are specified
in the above game description. The mediator does not have perfect recall: two histories (h1, ·, ·) and
(h2, ·, ·) belong to the same infoset in Γc if and only if h1 and h2 belong to the same infoset in Γ.

For concreteness, in Figure 15 we show the augmented games derived from the example game in Figure 12 for
all three solution concepts. For notational shorthand, we will use hτ to refer to the node in Γc corresponding
to the mediator making a recommendation with history h and trigger τ—that is, hτ = (h,⊥, τ) when
c = NFCCE or EFCE, and hτ = (h, ∗, τ) when c = EFCE.

43The sole purpose of this “dummy layer” is to synchronize the timing between Γc and Γ.

78



▲ decides
whether to deviate

if ▲ did not deviate,
▼ decides whether to deviate

the game is played.
the mediator acts for all

players who did not deviate

p2 q2 r2 s2

j2 k2 l2 m2 n2 o2

p q r s

j k l m n o

p1 q1 r1 s1

j1 k1 l1 m1 n1 o1

nature acts
at the root

▲ decides
whether to deviate

if ▲ has deviated, ▲ acts;
else, the mediator acts for ▲

if nobody has deviated yet,
▼ decides whether to deviate

if ▼ has deviated, ▼ acts;
else, the mediator acts for ▼

if nobody has deviated yet,
▲ decides whether to deviate

if ▲ has deviated, ▲ acts;
else, the mediator acts for ▲

pd qd rd sd

je ke

p q r s ph qh ri si

j k

pb qb rb sb

jc kc lf mf ng og l m n o lb mb nc oc

nature acts
at the root

mediator picks
a rec for ▲

▲ observes rec
and takes action

mediator picks
a rec for ▼

▼ observes rec
and takes action

(can only deviate if
▲ has not deviated)

if ▲ has not deviated,
mediator picks

a rec for ▲

▲ observes rec
and takes action

(can only deviate if
▼ has not deviated)

p qh ph q rd sd pd qd r si ri s pb qb rb sb

j ke je k jc kc lb mb l mf lf m nc oc n og ng o

Figure 15: Augmented games Γc for NFCCE (top), EFCCE (center), and EFCE (bottom),
where Γ is the example game in Figure 12. The obedient strategies o1,o2 are given by the
thick colored lines below ▲ and ▼’s decision points. Red circles denote decision points of
the mediator. Augmented histories are labeled as hτ , where h is the true node and τ is the
trigger. If no superscript is present, there was no trigger. For cleanliness, τ is abbreviated
in all three diagrams. For NFCCE, τ is the player i who deviated—for example, p2 means
terminal node p was reached, but ▼ deviated. For EFCCE, τ is the node at which the player
deviated—for example, pd means terminal node p was reached, but ▼ deviated at node d. For
EFCE, τ is the node at which the player deviated, followed by the recommendation ( or )
given to the player at that node—for example, qh means terminal node q was reached but ▲
deviated after being recommended to play at h.
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6.4.1 Optimal Correlation via the Augmented Game
We now discuss how to use the augmented game Γc to compute optimal correlated equilibria in Γ. We first
make a few critical observations:

First, the mediator has exactly one information set corresponding to each information set of the original
game Γ. Therefore, pure strategies of the mediator correspond to pure profiles in Γ, and mixed strategies of
the mediator correspond to correlated profiles in Γ. We will therefore abuse notation and also use ξ to refer
to mixed strategies for the mediator in Γ. Critically, the sequence form of ξ in each augmented game will
have enough information about the correlated distribution to define the incentive constraints of the players.
Second, each player has a unique obedient strategy oi, defined by always obeying recommendations (for EFCE)
and never choosing to deviate (or NFCCE and EFCCE). Finally, the size of the Γc is polynomial in the size
of Γ.

As a notational convention, where context is insufficient, we will generally use a superscript c to distinguish
the augmented game from the original game—for example, X c

i will denote the strategy set of player i in Γc,
etc.

Now let ξ be a mediator mixed strategy in Γc. Then ξ represents an equilibrium in Γ if and only if, in the
profile (ξ,oc

1, . . . ,oc
n), each (non-mediator) player i is playing a best response. That is, solving the following

program will give an optimal equilibrium:

max
ξ∈Ξc

g(ξ) s.t. max
xc

i
∈co X c

i

ui(ξ,xc
i ,oc

−i) ≤ ui(ξ,oc
i ,oc

−i) ∀i ∈ [n]

where Ξc is the mediator’s sequence-form mixed strategy set in Γc, and coX c
i is player i’s mixed strategy set

in Γc. Now, by representing the mixed strategy of each player (including the mediator) in sequence form, the
utility functions are linear in each strategy. Therefore, the above program can be rewritten as

max
ξ∈Ξc

g⊤ξ s.t. max
xc

i
∈co X c

i

ξ⊤Aix
c
i ≤ b⊤

i ξ ∀i ∈ [n] (6)

for vectors and matrices g,Ai, and bi. Now, the inner maximization

max
xc

i
∈co X c

i

ξ⊤Aix
c
i (7)

is itself an LP where ξ is a constant. Moreover, since each player i has perfect recall, the sequence-form
strategy sets coX c

i can be represented as polytopes coX c
i = {xc

i ≥ 0 : F c
i x

c
i = f c

i } for matrix and vector
F c

i ,f c
i of size linear in the size of Γc. We therefore can formally take a dual of (7), resulting in the LP

min
vi

(f c
i )⊤vi s.t. A⊤

i ξ ≤ (F c
i )⊤vi. (8)

By strong duality of linear programs (which holds in this case because (7) is always feasible), the programs
(7) and (8) have the same value. Therefore, (6) is equivalent to the linear program

max
ξ,vi:i∈[n]

g⊤ξ

s.t. 1 A⊤
i ξ ≤ (F c

i )⊤vi ∀i ∈ [n]
2 (f c

i )⊤vi ≤ b⊤
i ξ ∀i ∈ [n]

⋆ ξ ∈ Ξc

(9)

This program has size linear in the size of Γc and the description of the polytope Ξc. Unfortunately, in
general, since the mediator has imperfect recall, there is no efficient way of representing Ξc, that is, there is
no polynomial system of linear constraints describing Ξc. Indeed computing optimal equilibria for all three
notions c is NP-hard (von Stengel and Forges, 2008).

Although the pure strategy sets for the mediator are essentially the same in all three augmented games, the
sequence-form strategy sets Ξc are substantially different. The differences arise due to more deviations being
possible for some notions than for others. Consider for example the game Γ depicted in Figure 12. In the
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augmented game ΓEFCE (Figure 15, bottom), there is a terminal node pb whose player reach probability
ξ[pb ] is the probability that the mediator recommends ▲ to play right at b and ▼ to play left at infoset de.
There is no node in ΓNFCCE whose player reach probability represents the same thing. It should therefore
remain intuitively plausible that ΞEFCE should be more difficult to represent than ΞNFCCE. In the next
section, we will discover that this is precisely the case.

6.4.2 Comparison to Relevant Sequence-Based Construction of Ξ
Our construction via the mediator-augmented game uses a vector ξ ∈ Ξc to represent a correlated profile. It
is instructive to compare this representation to other representations of correlated profiles, in particular, the
correlation plan defined and used by von Stengel and Forges (2008). In this section, we will review the notion
of correlation plan defined by that paper, and compare it to our construction.

Definition 6.7. A sequence tuple (I1a1, . . . , Inan) ∈ Σ1 × · · · × Σn is relevant if there is a history h in Γ
such that either σi(h) = Iiai for every player i, or there is a player j—the deviator—such that σi(h) = Iiai

for all i ̸= j and Ij ⪯ h.

This definition was first proposed by von Stengel and Forges (2008) in the two-player case; here, we generalize
it to arbitrarily many players. Intuitively, the relevant tuples are those that appear in the linear program
defining any of the three notions.

Definition 6.8 (von Stengel and Forges, 2008). For a correlated profile µ ∈ ∆(X1×· · ·×Xn), the correlation
plan is the vector ξ ∈ RΣ defined by ξ[σ1, . . . , σn] = Ex∼µ

∏
i∈[n] xi[σi]. We denote by Ξ the set of all

correlation plans.

von Stengel and Forges (2008) go on to show that correlation plans are a sufficient representation for computing
(optimal) EFCE, in the sense that, if one could efficiently represent the set of all correlation plans, then one
can compute optimal EFCE efficiently. Farina et al. (Farina et al., 2019b, 2020) generalizes this observation to
NFCCE and EFCCE as well. Our linear program (9) achieves the same claim: if Ξc is efficiently representable
then optimal equilibria in notion c can be computed efficiently. One may wonder, therefore, about the
relationship between the two.

It turns out that each of our Ξc polytopes is in some sense merely a sub-vector of Ξ with the indices renamed.
That is, there is a natural injectiion from sequences of the mediator in Γc to relevant tuples (σ1, . . . , σn) ∈ Σ.
A mediator sequence in Γc corresponds to some history hτ . If τ = ⊥ then hτ corresponds to (σ1(h), . . . , σn(h)),
that is, ξ[hτ ] = ξ[σ1(h), . . . , σn(h)]; if τ is a nonempty trigger (say, P1 WLOG), then hτ corresponds to
(σ1(τ), σ2(h), . . . , σn(h)), where σ1(τ) is the last sequence of player i before τ . By construction of Γc, this
must be a relevant tuple.

In some sense, Ξc is therefore a refined notion of correlation plan that is specific to the equilibrium concept c,
only requiring the sequence tuples that are relevant for that concept. In the next section, we will show that,
in fact, the differences between the various Ξcs result in separations in the complexity of representing each
polytope, and therefore separations in the complexity of computing optimal equilibria.

The key barrier to computing optimal equilibria, in a sense, is that the mediator in the augmented game
has imperfect recall. In the next two sections, we will describe two methods of overcoming this imperfect
recall and thus of arriving at algorithms for computing optimal equilibria. The first (Section 6.5) applies the
recent construction of Zhang et al. (2023b), which is a general method of representing the sequence form of
an imperfect-recall player in a timeable game. The second (deferred to full paper (Zhang et al., 2024c)) is a
variant of column generation which is most powerful in two-player games, in which one (and only one) player
is allowed to play a mixed strategy, thereby allowing a much greater strategy set to be available for any given
support.
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6.5 Representing Imperfect-Recall Decision Spaces
Zhang et al. (2023b) recently developed a method for representing the sequence-form strategy spaces for
imperfect-recall players (equivalently, teams of players who cannot communicate) in timeable games. Since
the augmented games Γc are timeable, we directly apply their main result to our problem.

Definition 6.9. In a timeable extensive-form game Γ′, the connectivity graph GS of a subset of players
S ⊆ [n] is the graph whose nodes are histories of Γ′, and where there is an edge (h, h′) if h and h′ are in the
same level of the tree, and they are connected, i.e., there is an infoset I ∈ Ii, where i ∈ S, with h, h′ ⪯ I.

Definition 6.10. A set of nodes B ⊆ H is a belief for player i if

1. B contains at least one decision point for player i, that is, B ∩Hi ̸= ∅

2. there exists a pure strategy xi for player i such that B is a connected component of Gi[{h ∈ H : xi[h] =
1}] where Gi[·] denotes an induced connected component of Gi.

We will use Bi to denote the set of beliefs of player i.

Intuitively, beliefs represent sets of nodes that an imperfect-recall player will always be able to distinguish in
the future: that is, if B is a belief corresponding to pure strategy xi, then, upon reaching the belief B, player
i knows that it has reached belief B, and player i knows that it will never forget having reached B. Recall
from Section 3.5 the team belief DAG:

Theorem 6.11 (Team Belief DAG). There exists a representation of player i’s decision space as a
polytope whose constraint matrix has O∗(Ri) entries, where

Ri :=
∑

B∈Bi

∏
I∈Ii:

I∩B ̸=∅

|A(I)| (10)

The representation uses a DAG to model the decision problem faced by player i, and then bounds the number
of nodes in the DAG. For intuition, when Γ′ has perfect recall, one can check that beliefs are always disjoint
and every infoset I ∈ Ii is a belief, so the above expression is linear in the size of the game—indeed, in that
case, the representation reduces to the sequence-form polytope.

We use the above result to construct a representation of the mediator’s decision space, Ξc, in the augmented
game Γ′ := Γc. We call the representation of Ξc using Theorem 6.11 the correlation DAG for notion c.
Theorem 6.11 immediately gives an algorithm for solving the program (9). This algorithm is given in
Algorithm CorrelationDAG.

Algorithm CorrelationDAG: Optimal Correlated Equilibria via Correlation DAG
1: input: extensive-form game Γ, desired solution concept c, objective g : Z → R
2: construct the augmented game Γc

3: compute a polytope representation of the mediator’s strategy space, Ξc, using Theorem 6.11
4: solve the LP (9)
5: return ξ
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6.5.1 Analyzing the Size of the Representation
To analyze the complexity of Algorithm CorrelationDAG, it suffices to bound the quantity in (10). Notation-
ally, we will use Rc

M to denote the quantity RM in (10) in the augmented game Γc. We first introduce some
useful definitions.

Definition 6.12. A public state is a connected component of G = G[n].

Definition 6.13. Given a node h and a player i, the last infoset Ii(h) is the lowest (i.e., most recent) infoset
reached by player i on the path to h.

Definition 6.14. The information complexity k of an extensive-form game is the greatest number of unique
last infosets in any public state. In symbols, k = maxP ∈P |{Ii(h) : h ∈ P, i ∈ [n]}|.

Notice that it is possible for k to be much smaller than n|P |, because the set of last infosets may contain
duplicates. For example, in normal-form games (converted to extensive form in the canonical manner), we
have k = n since each terminal node is a public state and each player has only one infoset. As an example,
the information complexity of the game in Figure 12 is 3: the public state de has three last infosets, namely
b, c, and de itself.

Zhang et al. (2023b) use the definition of information complexity to bound the representation size of
Theorem 6.11. In particular, they show that if the decision problem for the imperfect-recall player i can be
decomposed into n perfect-recall players such that the information complexity is k, then Ri ≤ O∗((b + 1)k),
where b is the branching factor of the game. In this section, we show similar bounds in our setting. Note that
b and k here are the branching factor and information complexity of the original game Γ, not of Γc—therefore,
we cannot directly apply the bound Ri ≤ O∗((b + 1)k). Indeed, the mediator in Γc can have much higher
information complexity than Γ. Thus, we need to be more careful in our analysis.

Theorem 6.15. Let k be the information complexity of a timeable game Γ, b be its branching factor, and
d be its depth. Then RNFCCE

M ≤ O∗((b + 1)k
)
, REFCCE

M ≤ O∗((b + d− 1)k
)
, and REFCE

M ≤ O∗((bd)k
)
.

As an example, consider an extensive-form game of the following form. Chance first samples and privately
reveals types ti ∈ [T ] to each player i. Thereafter, there is no further privacy: all actions by the players
and chance after the root are public. By definition, we see that this game is a public-action game, and we
have k = nT because each sequence of post-root actions induces a public state with T private states for
each of the n players. Thus, Theorem 6.15 gives an algorithm for computing optimal EFCEs that runs in
time poly(|H|, (bd)nT ); in particular, if n = T = O(1) then the algorithm runs in polynomial time. To our
knowledge, we are the first to give a polynomial-time algorithm for this setting, even when n = T = 2.

We now show two settings in which we can improve our bounds from Theorem 6.15. They both depend on
certain information being public.

6.5.2 Public Player Actions
First, we discuss the setting in which player actions are public.

Definition 6.16. A game has public player actions if, for all public states P ∈ P containing at least one
non-chance node, for all actions a ∈

⋃
h∈P A(h), the set {ha : h ∈ P, a ∈ A(h)} is a union of public states.

Poker, for example, has this structure: the root public state contains only a chance node, and every action
thereafter is fully public. In this setting, we can remove the dependencies on b for NFCCE and EFCCE:

Theorem 6.17. In games with public player actions, RNFCCE
M = O∗(3k

)
and REFCCE

M = O∗(dk
)
.

Intuitively, the proof works by constructing a new game that reduces the branching factor of the original
game to 2 while keeping all other relevant structure intact. The fact that the players’ actions are public
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Figure 16: Two examples of two-player extensive-form game trees with no chance moves
and large information complexity k. In both examples, k can be increased arbitrarily by
increasing the branching factor of the root node. The left example would be easily reparable
with a tighter definition of information complexity (that takes into account the fact that only
one of the infosets in the second layer is reachable in any pure strategy profile), but the right
example is not so easily reparable, and examples such as these are the reason that the proof
of Theorem 6.19 is more involved than one may initially expect.

ensures that this transformation does not increase k. We defer the full proof to the full paper (Zhang et al.,
2024c).

Once again, the bound for NFCCE matches that of Zhang et al. (2023b) in team games, up to polynomial
factors. The bound on REFCE

M cannot be improved in this fashion, for two reasons. First, the (bd)k term in
that analysis comes from counting the number of triggers at a given node, which has not changed. Second, as
above, the proof of Theorem 6.17 modifies the original game tree to have lower branching factor. This is an
invalid transformation for EFCE, because some EFCE triggers present in the original game would not be
expressible in the new game.

6.6 Two-Player Games with Public Chance
We now discuss the case where chance actions are public. Since it is already NP-hard to compute optimal
equilibria in three-player games with no chance nodes (von Stengel and Forges, 2008), we restrict our attention
to two-player games. Farina and Sandholm (2020) showed, via a different construction, that in games with
public chance, Ξ has a polynomial-sized representation and therefore optimal NFCCEs, EFCCEs, and EFCEs
can be computed in polynomial time. In this section, we show that our correlation DAG matches this bound.

Definition 6.18. A game has public chance actions if, for every two nodes h, h′ in the same public state, the
lowest common ancestor h ∧ h′ is not a chance node.

We will assume for the rest of this section that levels in Γ uniquely specify whose move it is—that is, for
every level of the game tree, there exists a player i (possibly nature) such that every node in the level is a
decision node of player i. Since we have already assumed timeability, this additional assumption is without
loss of generality by adding dummy nodes (Carminati et al., 2022). Most practical games, including the
games we use in our experiments, already satisfy this assumption without further modification.

Theorem 6.19. In two-player timeable games with public chance actions, we have Rc
M = poly(|H|)

for all three notions c.

Initially, one may ask whether it is possible to prove this result by directly applying Theorem 6.15. In
particular, if it were the case that all two-player games of public chance had constant information complexity,
Theorem 6.19 would follow immediately. Unfortunately, this is not the case: in Figure 16, we exhibit two
families of two-player extensive-form games with no chance actions and information complexity that is linear
in the size of the game.
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Figure 17: An example of a timeable triangle-free game in which our construction will be
exponentially-sized (in the branching factor of the root node). In this game, the algorithm
of Farina and Sandholm (2020) works by essentially “re-ordering” the game tree so that
▼’s decision point is moved to the root, at which point the chance decision can be treated as
public, thereby removing the exponentiality.

6.6.1 Discussion: Relationship to Triangle-Freeness
Theorem 6.19 implies that Algorithm CorrelationDAG runs in polynomial time in two-player games of
public chance. As we mentioned, we are not the first to exhibit a polynomial-time algorithm in this setting;
Farina and Sandholm (2020) has exhibited one using a different technique, namely by showing that the von
Stengel–Forges (vSF) polytope (von Stengel and Forges, 2008) is tight. It is instructive to compare the two
approaches. The approach of Farina and Sandholm (2020) carries many similarities to our approach for this
special case—in particular, their approach also works by effectively constructing a DAG representation of
ΞEFCE. However, while their approach dynamically chooses which information set to expand next on the fly,
our approach uses the fixed ordering provided by the timeable game to decide which information set is “next”.
When the game is timeable, our approaches give essentially the same representation: indeed, the proof in the
previous section shows that there is a decision point of the mediator in Γc for every relevant pair (I1, σ2) or
(σ1, I2), which are precisely the branching points in the representation of Farina and Sandholm (2020).

Unlike their approach, our correlation DAG algorithm provides an FPT guarantee on any game. However,
it is limited to timeable games, whereas theirs generalizes beyond timeable games to a family they coin
triangle-free games. Here, for the sake of completeness, we include a definition of triangle-freeness.

Definition 6.20. In a two-player game, two information sets I1 ∈ I1 and I2 ∈ I2 are connected, denoted
I1 ▷◁ I2, if there exists a node h with h ⪰ I1 and h ⪰ I2. A triangle is a collection of four infosets I1, I ′

1 ∈ I1
and I2, I ′

2 ∈ I2 such that I1 ▷◁ J1, I2 ▷◁ J2, and I1 ▷◁ J2.

Intuitively, triangle-freeness is useful because it guarantees the existence of some “branching order” that
can be used to fill in the polytope ΞEFCE. We refer the reader to the paper of Farina and Sandholm (2020)
for more details. It is not difficult to construct triangle-free games in which our construction would be
exponentially-sized; see Figure 17. We leave to future research the question of whether it is possible to extend
our algorithm so that it is also runs in polynomial time in all triangle-free games, achieving the best of both
worlds.

6.6.2 Fixed-Parameter Hardness of Representing ΞEFCCE and ΞEFCE

A natural question is whether it is possible to achieve the same bound for EFCCE and EFCE as achieved
for NFCCE and team games—namely, a construction whose exponential term depends only on b and k. It
turns out that our construction does not accomplish this, and in fact, no representation of Ξc for c = EFCCE
or c = EFCE can have size O∗(f(k)) for any function f under standard complexity assumptions even when
b = 2. To do this, we first review some fundamental notions of parameterized complexity.

Definition 6.21. A fixed-parameter tractable (FPT) algorithm for a problem is an algorithm that takes as
input an instance x and a parameter k ∈ N, and runs in time f(k)poly(|x|), where |x| is the bit length of x
and f : N→ N is an arbitrary function.
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The k-CLIQUE problem44 is widely conjectured to not admit an FPT algorithm parameterized by the clique
size k. In the literature on parameterized complexity, this conjecture is known as FPT ̸= W[1], and is implied
by the exponential time hypothesis (Chen et al., 2005). We now show that this conjecture implies lower
bounds on the complexity of representing the polytopes ΞEFCCE and ΞEFCE.

Theorem 6.22. Assuming FPT ̸= W[1], there is no FPT algorithm for linear optimization over
ΞEFCCE or ΞEFCE parameterized by information complexity, even in two-player games with constant
branching factor.

Technically speaking, this result does not establish parameterized hardness of computing optimal EFCCEs or
EFCEs, as there could hypothetically be a method for doing so that exploits the special nature of the (9).
Indeed, the proof of Theorem 6.22 exploits the fact that the objective coefficient g[hτ ] may depend on τ as
well as h, which is not the case for the LP (9). However, we know of no technique for optimal equilibria that
would not also imply the ability to optimize over Ξc. Therefore, Theorem 6.22 is a lower bound that applies
to all known techniques for computing optimal EFCCEs and EFCEs.

7 Computing Optimal Equilibria and Mechanisms via
Learning in Zero-Sum Games

7.1 Introduction
In this paper, we introduce a new paradigm of learning in games for computing optimal equilibria. It applies
to extensive-form settings with any number of players, including information design, and solution concepts
such as correlated, communication, and certification equilibria. Further, our framework is general enough
to also capture optimal mechanism design and optimal incentive design problems in sequential settings.

Summary of Our Results. A key insight that underpins our results is that computing optimal equilibria
in multi-player extensive-form games can be cast via a Lagrangian relaxation as a two-player zero-sum
extensive-form game. This unlocks a rich technology, both theoretical and experimental, developed for
computing minimax equilibria for the more challenging—and much less understood—problem of computing
optimal equilibria. In particular, building on the framework of Zhang and Sandholm (2022a), our reduction
lends itself to mechanism design and information design, as well as an entire hierarchy of equilibrium concepts,
including normal-form coarse correlated equilibria (NFCCE) (Moulin and Vial, 1978), extensive-form coarse
correlated equilibria (EFCCE) (Farina et al., 2020), extensive-form correlated equilibria (EFCE) (von Stengel
and Forges, 2008), communication equilibria (COMM) (Forges, 1986; Myerson, 1986), and certification
equilibria (CERT) (Forges and Koessler, 2005). In fact, for communication and certification equilibria, our
framework leads to the first learning-based algorithms for computing them, addressing a question left open
by Zhang and Sandholm (2022a) (cf. (Fujii, 2023)).

We thus focus on computing an optimal equilibrium by employing regret minimization techniques in order to
solve the induced bilinear saddle-point problem. Such considerations are motivated in part by the remarkable
success of no-regret algorithms for computing minimax equilibria in large two-player zero-sum games (e.g.,
see (Bowling et al., 2015; Brown and Sandholm, 2018)), which we endeavor to transfer to the problem of
computing optimal equilibria in multi-player games.

In this context, we show that employing standard regret minimizers, such as online mirror descent (Shalev-
Shwartz, 2012) or counterfactual regret minimization (Zinkevich et al., 2007), leads to a rate of convergence of
T −1/4 to optimal equilibria by appropriately tuning the magnitude of the Lagrange multipliers (Corollary 7.4).
We also leverage the technique of optimism, pioneered by Chiang et al. (2012); Rakhlin and Sridharan (2013b)
and Syrgkanis et al. (2015), to obtain an accelerated T −1/2 rate of convergence (Corollary 7.5). These are the
first learning dynamics that (provably) converge to optimal equilibria. Our bilinear formulation also allows us

44The k-CLIQUE problem is to decide whether a given graph contains a clique of size at least k.
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to obtain last-iterate convergence to optimal equilibria via optimistic gradient descent/ascent (Theorem 7.6), in-
stead of the time-average guarantees traditionally derived within the no-regret framework. As such, we bypass
known barriers in the traditional learning paradigm by incorporating an additional player, a mediator, into the
learning process. Furthermore, we also study an alternative Lagrangian relaxation which, unlike our earlier ap-
proach, consists of solving a sequence of zero-sum games (cf. (Farina et al., 2019b)). While the latter approach
is less natural, we find that it is preferable when used in conjunction with deep RL solvers since it obviates the
need for solving games with large reward ranges—a byproduct of employing the natural Lagrangian relaxation.

Experimental results. We demonstrate the practical scalability of our approach for computing optimal
equilibria and mechanisms. First, we obtain state-of-the-art performance in a suite of 23 different benchmark
game instances for seven different equilibrium concepts. Our algorithm significantly outperforms existing
LP-based methods, typically by more than one order of magnitude. We also use our algorithm to derive
an optimal mechanism for a sequential auction design problem, and we demonstrate that our approach is
naturally amenable to modern deep RL techniques.

7.2 Preliminaries
We adopt the general framework of mediator-augmented games of Zhang and Sandholm (2022a) to define our
class of instances. Thus, for us, an extensive-form game has n players, a mediator M, and chance C. The
mixed realization-form strategy set of the mediator is denoted Ξ.

Revelation principle. The revelation principle allows us, without loss of generality, to restrict our attention
to equilibria where each player is playing some fixed pure strategy oi ∈ Xi.

Definition 7.1. The game Γ satisfies the revelation principle if there exists a direct pure strategy profile
o = (o1, . . . ,on) for the players such that, for all strategy profiles (µ,x) for all players including the mediator,
there exists a mediator strategy µ′ ∈ Ξ and functions fi : Xi → Xi for each player i such that:

1. fi(oi) = xi, and

2. uj(µ′,x′
i,o−i) = uj(µ, fi(x′

i),x−i) for all x′
i ∈ Xi, and players j ∈ [n] ∪ {M}.

The function fi in the definition of the revelation principle can be seen as a simulator for Player i: it tells
Player i that playing x′

i if other players play (µ,o−i) would be equivalent, in terms of all the payoffs to all
agents (including the mediator), to playing f(x′

i) if other agents play (µ,x−i). It follows immediately from the
definition that if (µ,x) is an ϵ-equilibrium, then so is (µ′,o)—that is, every equilibrium is payoff-equivalent
to a direct equilibrium.

The revelation principle applies and covers many cases of interest in economics and game theory. For example,
in (single-stage or dynamic) mechanism design, the direct strategy oi of each player is to report all information
truthfully, and the revelation principle guarantees that for all non-truthful mechanisms (µ,x) there exists a
truthful mechanism (µ′,o) with the same utilities for all players.45 For correlated equilibrium, the direct
strategy oi consists of obeying all (potentially randomized) recommendations that the mediator gives, and
the revelation principle states that we can, without loss of generality, consider only correlated equilibria where
the signals given to the players are what actions they should play. In both these cases (and indeed in general
for the notions we consider in this paper), it is therefore trivial to specify the direct strategies o without any
computational overhead. Indeed, we will assume throughout the paper that the direct strategies o are given.
Further examples and discussion of this definition can be found in the appendix of the full paper (Zhang
et al., 2023a).

Although the revelation principle is a very useful characterization of optimal equilibria, as long as we are given
o, all of the results in this paper actually apply regardless of whether the revelation principle is satisfied: when
it fails, our algorithms will simply yield an optimal direct equilibrium which may not be an optimal equilibrium.

45In a mechanism design context, a strategy for the mediator µ induces a mechanism; here we slightly abuse terminology by
referring to (µ,d) also as a mechanism.
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Under the revelation principle, the problem of computing an optimal equilibrium can be expressed as follows:

max
µ∈Ξ

uM(µ,o) s.t. max
xi∈co Xi

ui(µ,xi,o−i) ≤ ui(µ,o) ∀i ∈ [n].

The objective uM(µ,o) can be expressed as a linear expression c⊤µ, and ui(µ,xi,o−i) − ui(µ,o) can be
expressed as a bilinear expression µ⊤Aixi. Thus, the above program can be rewritten as

max
µ∈Ξ

c⊤µ s.t. max
xi∈co Xi

µ⊤Aixi ≤ 0 ∀i ∈ [n]. (11)

Zhang and Sandholm (2022a) now proceed by taking the dual linear program of the inner maximization,
which suffices to show that (11) can be solved using linear programming.46

Finally, although our main focus in this paper is on games with discrete action sets, it is worth pointing out
that some of our results readily apply to continuous games as well using, for example, the discretization
approach of Kroer and Sandholm (2015).

7.3 Lagrangian Relaxations and a Reduction to a Zero-Sum Game
Our approach in this paper relies on Lagrangian relaxations of the linear program (11). In particular, in this
section we introduce two different Lagrangian relaxations. The first one (Section 7.3.1) reduces computing an
optimal equilibrium to solving a single zero-sum game. We find that this approach performs exceptionally
well in benchmark extensive-form games in the tabular regime, but it may struggle when used in conjunction
with deep RL solvers since it increases significantly the range of the rewards. This shortcoming is addressed
by our second method, introduced in Section 7.3.2, which instead solves a sequence of suitable zero-sum
games.

7.3.1 “Direct” Lagrangian
Directly taking a Lagrangian relaxation of the LP (11) gives the following saddle-point problem:

max
µ∈Ξ

min
λ∈R≥0,

xi∈co Xi:i∈[n]

c⊤µ− λ

n∑
i=1

µ⊤Aixi. (L1)

We first point out that the above saddle-point optimization problem admits a solution (µ⋆,x⋆, λ⋆):

Proposition 7.2. The problem (L1) admits a finite saddle-point solution (µ∗,x∗, λ∗). Moreover, for
all fixed λ > λ∗, the problems (L1) and (11) have the same value and same set of optimal solutions.

The proof is in the appendix of the full paper (Zhang et al., 2023a). We will call the smallest possible λ∗ the
critical Lagrange multiplier.

Proposition 7.3. For any fixed value λ, the saddle-point problem (L1) can be expressed as a zero-sum
extensive-form game.

Proof. Consider the zero-sum extensive-form game Γ̂ between two players, the mediator and the deviator,
with the following structure:

1. Nature picks, with uniform probability, whether or not there is a deviator. If nature picks that there
should be a deviator, then nature samples, also uniformly, a deviator i ∈ [n]. Nature’s actions are
revealed to the deviator, but kept private from the mediator.

46Computing optimal equilibria can be phrased as a linear program, and so in principle Adler’s reduction could also lead to an
equivalent zero-sum game (Adler, 2013). However, that reduction does not yield an extensive-form zero-sum game, which is
crucial for our purposes; see Section 7.3.

88



2. The game Γ is played. All players, except i if nature picked a deviator, are constrained to according to
oi. The deviator plays on behalf of Player i.

3. Upon reaching terminal node z, there are two cases. If nature picked a deviator i, the utility is
−2λn · ui(z). If nature did not pick a deviator, the utility is 2uM(z) + 2λ

∑n
i=1 ui(z).

The mediator’s expected utility in this game is

uM(µ,o)− λ

n∑
i=1

[ui(µ,xi,o−i)− ui(µ,o)].

This characterization enables us to exploit technology used for extensive-form zero-sum game solving to
compute optimal equilibria for an entire hierarchy of equilibrium concepts

We will next focus on the computational aspects of solving the induced saddle-point problem (L1) using regret
minimization techniques. All of the omitted proofs are deferred to the appendix of the full paper (Zhang
et al., 2023a).

The first challenge that arises in the solution of (L1) is that the domain of the minimizing player is
unbounded—the Lagrange multiplier is allowed to take any nonnegative value. Nevertheless, we show in the
appendix of the full paper (Zhang et al., 2023a) that it suffices to set the Lagrange multiplier to a fixed value
(that may depend on the time horizon); appropriately setting that value will allow us to trade off between
the equilibrium gap and the optimality gap. We combine this theorem with standard regret minimizers
(such as variants of CFR employed in the experiments) to guarantee fast convergence to optimal equilibria.

Corollary 7.4. There exist regret minimization algorithms such that when employed in the saddle-point
problem (L1), the average strategy of the mediator µ̄ := 1

T

∑T
t=1 µ

(t) converges to the set of optimal
equilibria at a rate of T −1/4. Moreover, the per-iteration complexity is polynomial for communication
and certification equilibria (under the nested range condition (Zhang and Sandholm, 2022a)), while for
NFCCE, EFCCE and EFCE, implementing each iteration admits a fixed-parameter tractable algorithm.

Furthermore, we leverage the technique of optimism, pioneered by Chiang et al. (2012); Rakhlin and Sridharan
(2013b); Syrgkanis et al. (2015), to obtain a faster rate of convergence.

Corollary 7.5 (Improved rates via optimism). There exist regret minimization algorithms that
guarantee that the average strategy of the mediator µ̄ := 1

T

∑T
t=1 µ

(t) converges to the set of optimal
equilibria at a rate of T −1/2. The per-iteration complexity is analogous to Corollary 7.4.

While this rate is slower than the (near) T −1 rates known for converging to some of those equilibria (Daskalakis
et al., 2021; Farina et al., 2022; Piliouras et al., 2022; Anagnostides et al., 2021), Corollaries 7.4 and 7.5
additionally guarantee convergence to optimal equilibria; improving the T −1/2 rate of Corollary 7.5 is an
interesting direction for future research.

Last-iterate convergence. The convergence results we have stated thus far apply for the average strategy
of the mediator—a typical feature of traditional guarantees in the no-regret framework. Nevertheless, an
important advantage of our mediator-augmented formulation is that we can also guarantee last-iterate
convergence to optimal equilibria in general games. Indeed, this follows readily from our reduction to
two-player zero-sum games, leading to the following guarantee.

Theorem 7.6 (Last-iterate convergence to optimal equilibria in general games). There exist algorithms
that guarantee that the last strategy of the mediator µ(T ) converges to the set of optimal equilibria at a
rate of T −1/4. The per-iteration complexity is analogous to Corollaries 7.4 and 7.5.

As such, our mediator-augmented paradigm bypasses known hardness results in the traditional learning
paradigm since iterate convergence is no longer tied to Nash equilibria.
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7.3.2 Thresholding and Binary Search
A significant weakness of the above Lagrangian is that the multiplier λ∗ can be large. This means that,
in practice, the zero-sum game that needs to be solved to compute an optimal equilibrium could have a
large reward range. While this is not a problem for most tabular methods that can achieve high precision,
more scalable methods based on reinforcement learning tend to be unable to solve games to the required
precision. In this section, we will introduce another Lagrangian-based method for solving the program (11)
that will not require solving games with large reward ranges.

Specifically, let τ ∈ R be a fixed threshold value, and consider the bilinear saddle-point problem

max
µ∈Ξ

min
λ∈∆n+1,

xi∈co Xi:i∈[n]

λ0(c⊤µ− τ)−
n∑

i=1
λiµ

⊤Aixi, (L2)

where ∆k := {λ ∈ Rk
≥0 : 1⊤λ = 1} is the probability simplex on k items. This Lagrangian was also

stated—but not analyzed—by Farina et al. (2019b), in the special case of correlated equilibrium concepts
(NFCCE, EFCCE, EFCE). Compared to that paper, ours contains a more complete analysis, and is general
to more notions of equilibrium.

Like (L1), this Lagrangian is also a zero-sum game, but unlike (L1), the reward range in this Lagrangian is
bounded by an absolute constant:

Proposition 7.7. Let Γ be a (mediator-augmented) game in which the reward for all agents is bounded
in [0, 1]. For any fixed τ ∈ [0, 1], the saddle-point problem (L2) can be expressed as a zero-sum
extensive-form game whose reward is bounded in [−2, 2].

Proof. Consider the zero-sum extensive-form game Γ̂ between two players, the mediator and the deviator,
with the following structure:

1. The deviator picks an index i ∈ [n] ∪ {0}.
2. If i ̸= 0, nature picks whether Player i can deviate, uniformly at random.
3. The game Γ is played. All players, except i if i ̸= 0 and nature selected that i can deviate, are

constrained to play according to oi. The deviator plays on behalf of Player i.
4. Upon reaching terminal node z, there are three cases. If nature picked i = 0, the utility is uM(z)− τ .

Otherwise, if nature picked that Player i ̸= 0 can deviate, the utility is −2ui(z). Finally, if nature
picked that Player i ̸= 0 cannot deviate, the utility is 2ui(z).

The mediator’s expected utility in this game is exactly

λMuM(µ,o)−
n∑

i=1
λi[ui(µ,xi,o−i)− ui(µ,o)]

where λ ∈ ∆n+1 is the deviator’s mixed strategy in the first step.

The above observations suggest a binary-search-like algorithm for computing optimal equilibria; the
pseudocode is given as Algorithm BinSearch. The algorithm solves O(log(1/ϵ)) zero-sum games, each to
precision ϵ. Let v∗ be the optimal value of (11). If τ ≤ v∗, the value of (L2) is 0, and we will therefore never
branch low, in turn implying that u ≥ v∗ and ℓ ≥ v∗ − ϵ. As a result, we have proven:

Theorem 7.8. Algorithm BinSearch returns an ϵ-approximate equilibrium µ whose value to the
mediator is at least v∗− 2ϵ. If the underlying game solver used to solve (L2) runs in time f(Γ, ϵ), then
Algorithm BinSearch runs in time O(f(Γ, ϵ) log(1/ϵ)).

The differences between the two Lagrangian formulations can be summarized as follows:

90



Algorithm BinSearch: Pseudocode for binary search-based algorithm
1: input: game Γ with mediator reward range [0, 1], target precision ϵ > 0
2: ℓ← 0, u← 1
3: while u− ℓ > ϵ do
4: τ ← (ℓ + u)/2
5: run an algorithm to solve game (L2) until either
6: (1) it finds a µ achieving value ≥ −ϵ in (L2), or
7: (2) it proves that the value of (L2) is < 0
8: if case (1) happened then ℓ← τ
9: else u← τ

10: return the last µ found

1. Using (L1) requires only a single game solve, whereas using (L2) requires O(log(1/ϵ)) game solves.
2. Using (L2) requires only an O(ϵ)-approximate game solver to guarantee value v∗ − ϵ, whereas using

(L1) would require an O(ϵ/λ∗)-approximate game solver to guarantee the same, even assuming that the
critical Lagrange multiplier λ∗ in (L1) is known.

Which is preferred will therefore depend on the application. In practice, if the games are too large to be
solved using tabular methods, one can use approximate game solvers based on deep reinforcement learning. In
this setting, since reinforcement learning tends to be unable to achieve the high precision required to use (L1),
using (L2) should generally be preferred. In Section 8, we back up these claims with concrete experiments.

8 Experiments and Conclusion
Here, we describe some of the experiments that we have run using the algorithms described in this part.
Since all the techniques in this part are interrelated, this section is standalone rather than a subsection.

8.1 Optimal Equilibria in Tabular Games
We first extensively evaluate the empirical performance of our two-player zero-sum reduction (Section 7.3.1)
for computing seven equilibrium solution concepts across 23 game instances; the results using the method of
Section 7.3.2 are slightly inferior, and are included in the appendix of Zhang et al. (2023a).

The game instances we use are also described in detail in the appendix of Zhang et al. (2023a), and
belong to following eight different classes of established parametric benchmark games, each identified with
an alphabetical mnemonic: B – Battleship (Farina et al., 2019b), D – Liar’s dice (Lisỳ et al., 2015), GL
– Goofspiel (Ross, 1971), K – Kuhn poker (Kuhn, 1950b), L – Leduc poker (Southey et al., 2005), RS –
ridesharing game (Zhang et al., 2022b), S – Sheriff (Farina et al., 2019b), TP – double dummy bridge game
(Zhang et al., 2022b).

In Figure 19, we have plotted the payoff spaces of some representative instances. The plots show how the
polytopes of communication and full-certification equilibria behave relative to correlated equilibria. In the
battleship and sheriff instances, the space of communication equilibrium payoffs is a single point, which implies
that the space of NFCE (and hence Nash) equilibrium payoffs is also that single point. Unfortunately, that
point is the Pareto-least-optimal point in the space of EFCEs. In the ridesharing instances, communication
allows higher payoffs. This is because the mediator is allowed to “leak” information between players.
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Game # Nodes NFCCE EFCCE EFCE COMM CERT
LP CFR LP CFR LP CFR LP CFR LP CFR

B2222 1573 0.00s 0.00s 0.00s 0.01s 0.00s 0.02s 2.00s 1.49s 0.00s 0.02s
B2322 23,839 0.00s 0.01s 3.00s 0.69s 9.00s 1.60s timeout 4m 41s 2.00s 1.24s
B2323 254,239 6.00s 0.33s 1m 21s 14.23s 3m 40s 44.87s timeout timeout 37.00s 40.45s
B2324 1,420,639 38.00s 2.73s timeout 3m 1s timeout 10m 48s timeout timeout timeout 6m 14s

D32 1017 0.00s 0.01s 0.00s 0.02s 12.00s 0.40s 0.00s 0.06s 0.00s 0.01s
D33 27,622 2m 17s 12.93s timeout 1m 46s timeout timeout timeout 4m 37s 4.00s 3.14s

GL3 7735 0.00s 0.01s 1.00s 0.02s 0.00s 0.01s timeout 7.72s 0.00s 0.02s

K35 1501 49.00s 0.76s 46.00s 0.67s 57.00s 0.55s 1.00s 0.03s 0.00s 0.01s

L3132 8917 26.00s 0.59s 8m 43s 5.13s 8m 18s 6.10s 8.00s 3.46s 1.00s 0.10s
L3133 12,688 38.00s 0.94s 20m 26s 8.88s 21m 25s 6.84s 12.00s 3.40s 1.00s 0.22s
L3151 19,981 timeout 15.12s timeout timeout timeout timeout timeout 16.73s 2.00s 0.21s
L3223 15,659 4.00s 0.44s 1m 10s 2.94s 2m 2s 5.52s 19.00s 18.19s 1.00s 0.61s
L3523 1,299,005 timeout 1m 7s timeout timeout timeout timeout timeout timeout timeout 2m 58s

S2122 705 0.00s 0.00s 0.00s 0.01s 0.00s 0.02s 2.00s 0.35s 0.00s 0.02s
S2123 4269 0.00s 0.01s 1.00s 0.06s 1.00s 0.15s 1m 33s 59.63s 1.00s 0.15s
S2133 9648 1.00s 0.02s 3.00s 0.11s 3.00s 0.49s timeout 12m 11s 2.00s 0.92s
S2254 712,552 1m 58s 7.43s timeout 22.01s timeout 3m 34s timeout timeout timeout 2m 42s
S2264 1,303,177 3m 43s 11.74s timeout 39.23s timeout timeout timeout timeout timeout timeout

TP3 910,737 1m 38s 7.44s timeout 13.76s timeout 13.46s timeout timeout timeout 26.70s

RS212 598 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 2.00s 0.01s 0.00s 0.00s
RS222 734 0.00s 0.00s 0.00s 0.00s 0.00s 0.00s 3.00s 0.01s 0.00s 0.00s
RS213 6274 timeout 14.68s timeout 15.54s timeout 23.37s 6m 25s 8.74s 0.00s 0.02s
RS223 6238 timeout timeout timeout timeout timeout timeout 8m 54s 4.00s 1.00s 0.01s

Table 18: Experimental comparison between our learning-based approach (‘CFR’, Sec-
tion 7.3.1) and our linear-programming-based method (‘LP’, Section 6.4.1 and Section 5.3.1).
Within each pair of cells corresponding to ‘LP’ vs ‘CFR,’ the faster algorithm is shaded blue
while the hue of the slower algorithm depends on how much slower it is. If both algorithms
timed out, they are both shaded gray.
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Figure 19: Payoff spaces for various games and notions of equilibrium. The symbol ⋆

indicates that the set of communication equilibrium payoffs for that game is (at least, modulo
numerical precision) that single point. In the battleship instance, many of the notions overlap.
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Figure 20: Exploitability is measured by summing the best response for both bidders to the
mechanism. Zero exploitability corresponds to incentive compatibility. In a sequential auction
with budgets, our method is able to achieve higher revenue than second-price auctions and
better incentive compatibility than a first-price auction.

8.2 Exact Sequential Auction Design
Next, we use our approach to derive the optimal mechanism for a sequential auction design problem. In particu-
lar, we consider a two-round auction with two bidders, each starting with a budget of 1. The valuation for each
item for each bidder is sampled uniformly at random from the set {0, 1/4, 1/2, 3/4, 1}. We consider a mediator-
augmented game in which the principal chooses an outcome (allocation and payment for each player) given their
reports (bids). We use CFR+ (Tammelin et al., 2015) as learning algorithm and a fixed Lagrange multiplier
λ := 25 to compute the optimal communication equilibrium that corresponds to the optimal mechanism. We
terminated the learning procedure after 10000 iterations, at a duality gap for (L1) of approximately 4.2×10−4.
Figure 20 (left) summarizes our results. On the y-axis we show how exploitable (that is, how incentive-
incompatible) each of the considered mechanisms are, confirming that for this type of sequential settings,
second-price auctions (SP) with or without reserve price, as well as the first-price auction (FP), are typically
incentive-incompatible. On the x-axis, we report the hypothetical revenue that the mechanism would extract as-
suming truthful bidding. Our mechanism is provably incentive-compatible and extracts a larger revenue than all
considered second-price mechanisms. It also would extract less revenue than the hypothetical first-price auction
if the bidders behaved truthfully (of course, real bidders would not behave honestly in the first-price auction but
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rather would shade their bids downward, so the shown revenue benchmark in Figure 20 is actually not achiev-
able). Intriguingly, we observed that 8% of the time the mechanism gives an item away for free. Despite appear-
ing irrational, this behavior can incentivize bidders to use their budget earlier in order to encourage competitive
bidding, and has been independently discovered in manual mechanism design recently (Deng et al., 2021).

8.3 Scalable Sequential Auction Design via Deep Reinforcement
Learning

We also combine our framework with deep-learning-based algorithms for scalable equilibrium computation in
two-player zero-sum games to compute optimal mechanisms in two sequential auction settings. To compute
an optimal mechanism using our framework, we use the PSRO algorithm (Lanctot et al., 2017), a deep
reinforcement learning method based on the double oracle algorithm that has empirically scaled to large
games such as Starcraft (Vinyals et al., 2019) and Stratego (McAleer et al., 2020), as the game solver in
Algorithm BinSearch.47 To train the best responses, we use proximal policy optimization (PPO) (Schulman
et al., 2017).

First, to verify that the deep learning method is effective, we replicate the results of the tabular experiments
in Section 8.2. We find that PSRO achieves the same best response values and optimal equilibrium value
computed by the tabular experiment, up to a small error. These results give us confidence that our method
is correct.

Second, to demonstrate scalability, we run our deep learning-based algorithm on a larger auction environment
that would be too big to solve with tabular methods. In this environment, there are four rounds, and in each
round the valuation of each player is sampled uniformly from {0, 0.1, 0.2, 0.3, 0.4, 0.5}. The starting budget of
each player is, again, 1. We find that, like the smaller setting, the optimal revenue of the mediator is ≈ 1.1
(right-side of Figure 20). This revenue exceeds the revenue of every second-price auction (none of which have
revenue greater than 1).48

8.4 Conclusion
We proposed a new paradigm of learning in games. It applies to mechanism design, information design, and
solution concepts in multi-player extensive-form games such as correlated, communication, and certification
equilibria. Leveraging a Lagrangian relaxation, our paradigm reduces the problem of computing optimal
equilibria to determining minimax equilibria in zero-sum extensive-form games. We also demonstrated the
scalability of our approach for computing optimal equilibria by attaining state-of-the-art performance in
benchmark tabular games, and by solving a sequential auction design problem using deep reinforcement
learning. Along the way, we have shown parameterized complexity results—both upper and lower bounds—for
the special case of computing optimal correlated equilibria.

Possible directions of future research include the following.

1. Is there a better-than-quadratic-size linear program or similar algorithm for communication equilibria?

2. Is it possible to extend our augmented game construction to also cover normal-form correlated equilibria
while maintaining efficiency?

3. Investigate further the comparison between communication and correlation in games. For example,
when and why do communication equilibria achieve higher social welfare than extensive-form correlated
equilibria?

4. Extend CorrelationDAG in such a way that it also has polynomial size in all triangle-free games.
47We also tested PSRO on the Lagrangian (L1), but this proved to be incompatible with deep learning due to the large reward

range induced by the multiplier λ.
48We are inherently limited in this setting by the inexactness of best responses based on deep reinforcement learning; as such,

it is possible that these values are not exact. However, because of the success of above tabular experiment replications, we
believe that our results should be reasonably accurate.
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5. An intelligent combination—rather than merely a selection of one versus the other—of the correlation
DAG and the column generation algorithm may lead to faster practical algorithms.

6. Investigate possible use of the payoff structure in the game; for example, investigate extensions of the
concept of smooth games (Roughgarden, 2015).
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Part III

Learning in Games
9 Preliminaries
Before proceeding, we must introduce some notation and background that will be fundamental in this part.

9.1 Φ-Regret Minimization
In the framework of online learning, a learner interacts with an adversary over a sequence of rounds. In
each round, the learner selects a strategy, whereupon the adversary constructs a utility function which is
subsequently observed by the learner. Throughout this paper, we allow the adversary to be strongly adaptive,
so that the utility function at the tth round u(t) : X ∋ x 7→ ⟨u(t),x⟩ can depend on the strategy of the learner
at that round. We assume that utilities belong to U := {u : |⟨u,x⟩| ≤ 1 ∀x ∈ X}. It will be convenient to
use ∥x∥X := maxu∈U ⟨u,x⟩ for the induced norm.

We measure the performance of an online learning algorithm as follows. Suppose that Φ ⊆ (coX )X is a
set of deviations. If the learner outputs in each round a mixed strategy π(t) ∈ ∆(X ), its (time-average)
Φ-regret (Greenwald and Hall, 2003; Stoltz and Lugosi, 2007) is defined as

RegT
Φ := 1

T
max
ϕ∈Φ

T∑
t=1

〈
u(t), E

x(t)∼π(t)
[ϕ(x(t))− x(t)]

〉
. (12)

In the special case where Φ contains only constant transformations, one recovers the notion of external regret.
On the other extreme, swap regret corresponds to Φ containing all functions X → X .

It is sometimes assumed that the learner instead selects in each round a strategy x(t) ∈ coX . To translate (12)
in that case, we introduce the extended mapping of a deviation ϕ : X → coX as ϕδ := Ex′∼δ(x)[ϕ(x′)], where
δ : coX → ∆(X ) is a function that is consistent in the sense that Ex′∼δ(x)[x′] = x. A canonical example of
such a function δ is the behavioral strategy map β : coX → ∆(X ), which returns the unique (ignoring actions
at decision points reached with probability zero) mixed strategy whose actions at different decision points are
independent and whose expectation is x. We give another example of a consistent map in Section 11.5.2.
Accordingly, we let Φδ denote all extended mappings. In this context, Φδ-regret is defined as

RegT
Φδ := 1

T
max

ϕδ∈Φδ

T∑
t=1

〈
u(t), ϕδ(x(t))− x(t)

〉
.

We are interested in algorithms whose regret is bounded by ϵ after T = poly(N, 1/ϵ) rounds. We refer to such
algorithms as fully-polynomial no-regret learners.

Remark 9.1 (Swap versus internal regret). When it comes to defining correlated equilibria in normal-form
games, there are two prevalent definitions appearing in the literature; one is based on internal regret, while the
other on swap regret (e.g., (Ganor and Karthik C. S., 2018; Goldberg and Roth, 2016)). The key difference is
that internal regret only contains deviations that swap a single action—thereby being weaker. Nevertheless,
it is not hard to see that swap regret can only be larger by a factor of |X | (Blum and Mansour, 2007), where
we recall that X denotes the set of pure strategies. So, in normal-form games those two definitions are
polynomially equivalent, and in most applications one can safely switch from one to the other.

However, this is certainly not the case in games with an exponentially large action space, such as extensive-form
games. In fact, the definition of internal regret itself is problematic when the action set is exponentially large:
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the uniform distribution always attains an error of at most 1/|X |. Consequently, any guarantee for ϵ ≥ 1/|X |
is vacuous. That is, if |X | is exponentially large, an algorithm that requires a number of iterations polynomial
in 1/ϵ—which is what we expect to get from typical no-regret dynamics—would need an exponential number
of iterations to yield a non-trivial guarantee; this issue with internal regret was also observed by Fujii (2023).
Nevertheless, internal regret in the context of games with an exponentially large action set was used in a
recent work by Chen et al. (2023), who provided oracle-efficient algorithms for minimizing internal regret.

9.2 The GGM Construction
Gordon et al. (2008), building on earlier work by Blum and Mansour (2007) and Stoltz and Lugosi (2005),
came up with a general recipe for minimizing Φδ-regret. That construction relies on a no-regret learning
algorithm on the set of deviations Φδ, which we denote by RΦ. Then, a Φδ-regret minimizer on coX can be
constructed as follows: on each iteration t = 1, . . . , T , the learner performs the following steps.

1. Receive ϕ(t) from RΦ. Select x(t) ∈ coX as an ϵ-fixed point of ϕ(t): ∥ϕ(t)(x(t))− x(t)∥X ≤ ϵ.

2. Upon receiving utility u(t) ∈ U , pass utility Φδ ∋ ϕδ 7→
〈
u(t), ϕδ(x(t))

〉
to RΦ.

Theorem 9.2 (Gordon et al., 2008). Suppose that RegT is the external regret incurred by RΦ. After
T rounds of the above algorithm, we have

max
ϕδ∈Φδ

1
T

T∑
t=1

〈
u(t), ϕδ(x(t))− x(t)

〉
≤ RegT + ϵ.

In Section 11.5.1, we will relax the requirement of needing (approximate) fixed points, while at the same time
maintaining the guarantee of Theorem 9.2.

9.3 Convergence to Correlated Equilibria
Notions of Φ-regret correspond naturally to notions of correlated equilibria. Therefore, our results also have
implications for no-regret learning algorithms that converge to correlated equilibria. Here, we formalize
this connection. Consider an n-player game in which player i’s strategy set is a tree-form strategy set Xi,
and player i’s utility is given by a multilinear map ui : X1 × · · · × Xn → [−1, 1]. For each player i, let
Φi ⊆ (coXi)Xi be a set of deviations for player i. Finally let Φ = (Φ1, . . . , Φn).

Definition 9.3. A distribution π ∈ ∆(X1 × · · · × Xn) is called a correlated profile. A correlated profile π is
an ϵ-Φ-equilibrium if no player i can profit more than ϵ via any of the deviations ϕi ∈ Φi to its strategy. That
is, Ex∼π ui(ϕi(xi),x−i) ≤ Ex∼π ui(xi,x−i) + ϵ for all players i and ϕi ∈ Φi.

For example, we can define k-mediator equilibria and degree-k swap equilibria by setting Φi to Φk
med and

Φk
poly, respectively. The following celebrated result follows immediately from the definitions of equilibrium

and regret.

Proposition 9.4. Suppose that every player i plays according to a regret minimizer whose Φi-regret
is at most ϵ after T rounds. Let π

(t)
i ∈ ∆(Xi) be the distribution played by player i at round t. Let

π(t) ∈ ∆(X1)× · · ·×∆(Xn) be the product distribution whose marginal on Xi is π
(t)
i . Then the average

strategy profile, that is, the distribution 1
T

∑
t∈[T ] π(t), is an ϵ-Φ-equilibrium.

Some common choices of Φ, and corresponding equilibrium notions, are in Table 21.

Finally, notationally, it will be convenient for us to denote |Σ| = N .
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Deviations Φ Equilibrium concept References
Constant (external), Φ = {ϕ : x 7→ x0 | x0 ∈ X} Normal-form coarse correlated Moulin and Vial (1978)
Trigger (see Section 10.2) Extensive-form correlated von Stengel and Forges (2008)
Communication (see Section 10.2) Communication Forges (1986); Myerson (1986)
Linear / Untimed communication Linear correlated Farina and Pipis (2023); Section 10
Swap, Φ = XX Normal-form correlated Aumann (1974)

Table 21: Some examples of deviation sets Φ and corresponding notions of correlated
equilibrium, in increasing order of size of Φ (and thus increasing tightness of the equilibrium
concept)

10 Mediator Interpretation and Faster Learning Algo-
rithms for Linear Correlated Equilibria

10.1 Introduction
In this paper, we consider a notion of regret first studied for extensive-form games by Farina and Pipis
(2023), namely, regret with respect to the set of linear functions from the strategy set to itself. This notion
is a natural stepping stone between external regret, which is very well studied, and swap regret, for which
achieving poly(N) · T c regret, where N is the size of the decision problem and c < 1, is a long-standing open
problem. We make two main contributions.

The first contribution is conceptual: we give, for extensive-form games, an interpretation of the set of linear
deviations. More specifically, we will first introduce a set of deviations, which we will call the untimed
communication (UTC) deviations that, a priori, seems very different from the set of linear deviations at least
on a conceptual level. The deviation set, rather than being defined algebraically (linear functions), will be
defined in terms of an interaction between a deviator, who wishes to evaluate the deviation function at a
particular input, and a mediator, who answers queries about the input. We will show the following result,
which is our first main theorem:

Theorem 10.1. The untimed communication deviations are precisely the linear deviations.

The mediator-based framework is more in line with other extensive-form deviation sets—indeed, all prior
notions of regret for extensive form, to our knowledge, including all the notions discussed above, can be
expressed in terms of the framework. As such, the above theorem places linear deviations firmly within the
same framework usually used to study deviations in extensive form.

We will then demonstrate that the set of UTC deviations is expressible in terms of scaled extensions (Farina
et al., 2019c), opening up access to a wide range of extremely fast algorithms for regret minimization, both
theoretically and practically, for UTC deviations and thus also for linear deviations. Our second main theorem
is as follows.

Theorem 10.2 (Faster linear-swap regret minimization). There exists a regret minimizer with regret
O(N2

√
T ) against all linear deviations, and whose per-iteration complexity is dominated by the

complexity of computing a fixed point of a linear map ϕ(t) : coX → coX .

In particular, using the algorithm of Cohen et al. (2021) to solve the linear program of finding a fixed point,
our per-iteration complexity is Õ(Nω), where ω ≈ 2.37 is the current matrix multiplication constant and
Õ hides logarithmic factors. We elaborate on the fixed-point computation in Section 10.5. This improves
substantially on the result of Farina and Pipis (2023), which has the same regret bound but whose per-iteration
computation involved a quadratic program (namely, an ℓ2 projection), which has higher complexity than a
linear program (they give a bound of Õ(N10)). Finally, we demonstrate via experiments that our method is
also empirically faster than the prior method.
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10.2 Mediators and UTC Deviations
For extensive-form games, linear-swap regret was recently studied in detail by Farina and Pipis (2023): they
provide a characterization of the set ΦLin when X is a sequence-form polytope, and thus derive an algorithm
for minimizing ΦLin-regret over X . Their paper is the starting point of ours.

With the notable exception of linear deviations, most sets of deviations Φ for extensive-form games are defined
by interactions between a mediator who holds a strategy x ∈ X , and a deviator, who should compute the
function ϕ(x) by making queries to the mediator. The set of deviations is then defined by what queries that
the player is allowed to make. Before continuing, we will first formulate the sets Φ mentioned in Section 9.3
in this paradigm, for intuition. For a given decision point j, call an action a ∈ Aj the recommended action at
j, denoted a(x, j), if x[ja] = 1. Since x is a sequence-form strategy, it is possible for a decision point to have
no recommended action if its parent pj is itself not recommended.

• Constant (NFCCE): The deviator cannot to make any queries to the mediator.

• Trigger (EFCE): The deviator, upon reaching a decision point j, learns the recommended action (if
any) at j before selecting its own action.

• Communication: The deviator maintains a state with the mediator, which is a sequence σ, initially
∅. Upon reaching a decision point j, the deviator selects a decision point j′ ∈ Cσ (possibly j′ ̸= j) at
which to query the mediator, the deviator observes the recommendation a′ = a(x, j′), then the deviator
must pick an action a ∈ Aj . The state is updated to j′a′.

• Swap (NFCE): The deviator learns the whole strategy x before selecting its strategy.

An example of a communication deviation can be found in Section 10.4. Of these, the closest notion to ours
is the notion of communication deviation, and that is the starting point of our construction. One critical
property of communication deviations is that the mediator and deviator “share a clock”: for every decision
point reached, the deviator must make exactly one query to the mediator. As the name suggests, our set of
untimed deviations results from removing this timing restriction, and therefore allowing the deviator to make
any number (zero, one, or more than one) of queries to the mediator for every decision point reached. We
formally define the decision problem faced by an untimed deviator as follows.

Definition 10.3. The UTC decision problem corresponding to a given tree-form decision problem is defined
as follows. Nodes are identified with pairs (s, s̃) where s, s̃ ∈ Σ∪J . s represents the state of the real decision
problem, and s̃ represents the state of the mediator. The root is (∅,∅) ∈ Σ× Σ.

1. (σ, σ̃) ∈ Σ× Σ is an observation point. The deviator observes the next decision point j ∈ Cσ, and the
resulting decision point is (j, σ̃)

2. (j, ȷ̃) ∈ J × J is an observation point. The deviator observes the recommendation a = a(x, ȷ̃), and the
resulting decision point is (j, ȷ̃a).

3. (j, σ̃) ∈ J ×Σ is a decision point. The deviator can choose to either play an action a ∈ Aj , or to query
a decision point ȷ̃ ∈ Cσ̃. In the former case, the resulting observation point is (ja, σ̃) for a ∈ Aj ; in the
latter case, the resulting observation point is (j, ȷ̃).

Any mixed strategy of the deviator in this decision problem defines a function ϕ : X → coX , where ϕ(x)[σ] is
the probability that an untimed deviator plays all the actions on the path to σ when the mediator recommends
according to pure strategy x. We thus define:

Definition 10.4. An UTC deviation is any function ϕ : X → coX induced by a mixed strategy of the
deviator in the UTC decision problem.

Clearly, the set of UTC deviations is at least as large as the set of communication deviations, and at most as
large as the set of swap deviations. In the next section, we will discuss how to represent UTC deviations, and
show that UTC deviations coincide precisely with linear deviations.
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10.3 Representation of UTC Deviations and Equivalence between
UTC and Linear Deviations

Since UTC deviations are defined by a decision problem, one method of representing such deviations is to
express it as a tree-form decision problem and use the sequence-form representation. However, the UTC
decision problem is not a tree—it is a DAG, since there are multiple ways of reaching any given decision
point (j, σ̃) depending on the ordering of the player’s past actions and queries. Converting it to a tree by
considering the tree of paths through the DAG would result in an exponential blowup: a decision point (j, σ̃),
where j is at depth k and σ̃ is at depth ℓ, can be reached in roughly

(
k+ℓ

k

)
ways, so the total number of paths

can be exponential in the depth of the decision problem even when the number of sequences, N = |Σ|, is not.

However, it is still possible to define the “sequence form” of a pure deviation in our UTC decision problem as
follows49: it is a pair of matrices (A, B) where A ∈ {0, 1}Σ×Σ encodes the part corresponding to sequences
(σ, σ̃), and B ∈ {0, 1}J ×J encodes the part corresponding to decision points (j, ȷ̃). A(σ, σ̃) = 1 if the deviator
plays all the actions on some path to observation point (σ, σ̃), and similarly B(j, ȷ̃) = 1 if the deviator plays
all the actions on some path to observation node (j, ȷ̃). Since the only possible way for two paths to end
at the same observation point is for the deviator to have changed the order of actions and queries, for any
given pure strategy of the deviator, at most one path can exist for both cases. Therefore, the set of mixed
sequence-form deviations can be expressed using the following set of constraints:

A[pj , σ̃] + B[j, pσ̃] =
∑

a∈Aj

A[ja, σ̃] +
∑

ȷ̃∈Cσ̃

B[j, ȷ̃] ∀j ∈ J , σ̃ ∈ Σ

A[∅,∅] = 1
A[∅, σ̃] = 0 ∀σ̃ ̸= ∅

A, B ≥ 0

where, in a slight abuse of notation, we define B[j, p∅] := 0 for every j ∈ J . Moreover, for any pair of
matrices (A, B) satisfying the constraint system and therefore defining some deviation ϕ : X → coX , it is
easy to compute how ϕ acts on any x ∈ X : the probability that the deviator plays all the actions on the
∅→ σ path is simply given by ∑

σ̃∈Σ
x[σ̃]A[σ, σ̃] = (Ax)[σ],

and therefore ϕ is nothing more than a matrix multiplication with A, that is, ϕ(x) = Ax. We have thus
shown that every UTC deviation is linear, that is, ΦUTC ⊆ ΦLin. In fact, the reverse inclusion holds too:

Theorem 10.5. The UTC deviations are precisely the linear deviations. That is, ΦUTC = ΦLin.

The proof is deferred to the appendix of the full paper (Zhang et al., 2024d). Since the two sets are equivalent,
in the remainder of the paper, we will use the terms UTC deviation and linear deviation (similarly, UTC
regret and linear-swap regret) interchangeably.

49This construction is a special case of the more general construction of sequence forms for DAG decision problems explored
by Zhang et al. (2023b) in the case of team games.
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10.4 Example
In this section, we provide an example in which the UTC deviations are strictly more expressive than the
communication deviations. Consider the game in Figure 22. The subgames rooted at D and E are guessing
games, where ▲ must guess ▼’s action, with a large penalty for guessing wrong. Consider the correlated
profile that mixes uniformly among the four pure profiles (ai, bj , c1, fi, gj) for i, j ∈ {1, 2}. In this profile,
the information that ▲ needs to guess perfectly is contained in the recommendations: the recommendation at
A tells it how to guess at D, and the recommendation at B tells it how to guess at E. With a communication
deviation, ▲ cannot access this information in a profitable way, since upon reaching C, ▲ must immediately
make its first mediator query. Hence, this profile is a communication equilibrium. However, with an untimed
communication deviation, ▲ can profit: it should, upon reaching50 C, play action c2 without making a
mediator query, and then query A if it observes D, and B if it observes E. This deviation is allowed only due
to the untimed nature of UTC deviations allows the deviating player to delay its query to the mediator until
it reaches either D or E. In a timed communication deviation, this deviation is impossible, because the player
must make its first query (A, B, or C) before reaching D or E, and thus that query cannot be conditioned on
which one of D or E will be reached.

Another example, where the player can profit from making more than one query, and untimed deviations
affects the set of possible equilibrium outcomes, can be found in the appendix of the full paper (Zhang et al.,
2024d).

10.5 Regret Minimization on ΦUTC

In this section, we discuss how Theorem 10.5 can be used to construct very efficient ΦLin-regret minimizers,
both in theory and in practice. The key observation we use here is due to Zhang et al. (2023b): they observed
that DAG decision problems have a structure that allows them to be expressed as scaled extensions, allowing
the application of the counterfactual regret minimization (CFR) framework (Zinkevich et al., 2007; Farina
et al., 2019a):

Theorem 10.6 (CFR for ΦLin, special case of Zhang et al., 2023b). CFR-based algorithms can be
used to construct an external regret minimizer on ΦUTC (and thus also on ΦLin) with O(N2

√
T ) regret

and O(N2) per-iteration complexity.

Applying Theorem 9.2 now yields:

Theorem 10.7. CFR-based algorithms can be used to construct a ΦLin-regret minimizer with O(N2
√

T )
regret, and per-iteration complexity dominated by the complexity of computing a fixed point of a linear
transformation ϕ(t) : coX → coX .

As mentioned in the introduction, this significantly improves the per-iteration complexity of linear-swap
regret minimization. Fixed points can be computed by finding a feasible solution to the constraint system
{x ∈ coX , Ax = x}, where x ∈ coX is expressed using the sequence-form constraints. This is a linear
program with O(N) variables and constraints, so the LP algorithm of Cohen et al. (2021) yields a fixed-point
computation algorithm with runtime Õ(Nω).

For comparison, the algorithm of Farina and Pipis (2023) requires an ℓ2 projection onto X on every iteration,
which requires solving a convex quadratic program; the authors of that paper derive a bound of Õ(N10),
which, although polynomial, is much slower than our algorithm. CFR-based algorithms are currently the
fastest practical regret minimizers (Brown and Sandholm, 2019a; Farina et al., 2021a)—therefore, showing
that our method allows such algorithms to be applied is also a significant practical step. In Section 10.7, we
will show empirically that the resulting algorithm is significantly better than the previously-known state of
the art, in terms of both per-iteration time complexity and number of iterations.

50The actions/queries ▲ makes at A and B are irrelevant, because ▲ only cares about maximizing utility, and it always gets
utility 0 regardless of what it does. In the depiction of this deviation in Figure 23, the deviator always plays action 1 at A and B.
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Figure 22: An example extensive-form game in which communication deviations are a
strict subset of UTC deviations. There are two players, P1 (▲) and P2 (▼). Infosets for
both players are labeled with capital letters (e.g., A) and joined by dotted lines. Actions are
labeled with lowercase letters and subscripts (e.g., a1). P1’s utility is labeled on each terminal
node. P2’s utility is zero everywhere (not labeled). Boxes are chance nodes, at which chance
plays uniformly at random.
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Figure 23: A part of the UTC decision problem for ▲ corresponding to the same game.
Nodes labeled ▲ are decision points for ▲; boxes are observation points. “...” denotes that
the part of the decision problem following that edge has been omitted. Terminal nodes are
unmarked. Red edge labels indicate interactions with the mediator; blue edge labels indicate
interactions with the game. The profitable untimed deviation discussed in Section 10.4 is
indicated by the thick lines. The first action taken in that profiable deviation, c2, is not legal
for a timed deviator, because a timed deviator must query the mediator once before taking its
first action. The matrices (lower-left corner) are the pair of matrices (A, B) corresponding
to that same deviation. All blank entries are 0.
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Figure 24: Experimental comparison between our dynamics and those of Farina and Pipis
(2023) for approximating a linear correlated equilibrium in extensive-form games. Each
algorithm was run for a maximum of 100,000 iterations or 6 hours, whichever was hit first.
Runs that were terminated due to the time limit are marked with a square ■.

10.6 Untimed Communication Equilibria
The UTC deviations, like all sets of deviations, give rise to a notion of equilibrium. We define:

Definition 10.8. In an extensive-form game, an untimed private communication equilibrium is a correlated
profile that is a (Φi)-equilibrium where Φi is player i’s set of UTC deviations.

We add the word “private” here in the name to emphasize the fact that the mediator must have a separate
interaction with each player—that is, the mediator cannot use its interactions with one player to inform how
it gives recommendations to another player. This is enforced by the fact that the equilibrium is a correlated
profile. See Part II regarding why this distinction is important.

Defining untimed communication equilibrium without such a privacy restriction seems to be a subtle task, and
is orthogonal to and beyond the scope of the present work. However, we will make a few informal comments
here. Untimed communication equilibria (without the privacy constraint) are difficult to define in a way that
does not quickly collapse to the regular notion of communication equilibrium. In games with three or more
players, the mediator is always guaranteed that two of the players have not deviated, and those two players
will have messages synchronized with the game clock. Therefore, under reasonable assumptions on how often
each player makes moves, the mediator will immediately know if the deviating player is sending out-of-order
messages, and this concept would reduce immediately to the regular communication equilibrium. It is entirely
unclear how to define a notion of untimed (non-private) communication equilibrium that does not exhibit
such a collapse.

In two-player games, it is possible that there is a reasonable way to define untimed communication equilibria.
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The above collapse does not apply, because the mediator will not know which player is the one sending
out-of-timing messages. However, this definition would still be rather subtle—for example, when do the
out-of-order messages arrive to the mediator, relative to the other player’s messages? We leave these issues to
future work.

10.7 Experimental Evaluation
We empirically investigate the performance of our learning dynamics for linear correlated equilibrium,
compared to the recent algorithm by Farina and Pipis (2023). We test on four benchmark games:

• 4-player Kuhn poker, a multiplayer variant of the classic benchmark game introduced by Kuhn (1950b).
The deck has 5 cards. This game has 3,960 terminal states.

• A ridesharing game, a two-player general-sum game introduced as a benchmark for welfare-maximizing
equilibria by Zhang et al. (2022b). This game has 484 terminal states.

• 3-player Leduc poker, a three-player variant of the classic Leduc poker introduced by Southey et al.
(2005). Only one bet per round is allowed, and the deck has 6 cards (3 ranks, 2 suits). The game has
4,500 terminal states.

• Sheriff of Nottingham, a two-player general-sum game introduced by Farina et al. (2019b) for its
richness of equilibrium points. The smuggler has 10 items, a maxmimum bribe of 2, and 2 rounds to
bargain. The game has 2,376 terminal states.

We run our algorithm based on the UTC polytope, and that of Farina and Pipis (2023) (with the learning
rate η = 0.1 as used by the authors), for a limit of 100,000 iterations or 6 hours, whichever is hit first. Instead
of solving linear programs to find the fixed points, we use power iteration, which is faster in practice. All
experiments were run on the same machine with 32GB of RAM and a processor running at a nominal speed of
2.4GHz. For our learning dynamics, we employed the CFR algorithm instantiated with the regret matching+

(Tammelin, 2014) regret minimizer at each decision point (see Theorem 10.6). Experimental results are shown
in Figure 24.

One of the most appealing features of our algorithm is that allows CFR-based methods to apply. CFR-based
methods are the fastest regret minimizers in practice, so it is unsurprising that using them results in better
convergence as seen in Figure 24. Another appealing feature is that our method sidesteps the need of
projecting onto the set of transformations. This is in contrast with the algorithm of Farina and Pipis (2023),
which requires an expensive projection at every iteration. We observe that this difference results in a dramatic
reduction in iteration runtime between the two algorithms, which we quantify in Table 25. So, we remark
that when accounting for time instead of iterations on the x-axis of the plots in Figure 24, the difference in
performance between the algorithms appears even stronger. Such a plot is available in the appendix of the
full paper (Zhang et al., 2024d).

10.8 Conclusion
In this paper, we have introduced a new representation for the set of linear deviations when the strategy space
is sequence form. Our representation connects linear deviations to the mediator-based framework that is more
typically used for correlation concepts in extensive-form games, and therefore gives a reasonable game-theoretic
interpretation of what linear equilibria represent. It also leads to state-of-the-art no-linear-regret algorithms,
both in theory and in practice.
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Game Our algorithm Farina and Pipis (2023) Speedup
4-Player Kuhn poker 5.65ms ± 0.30ms 195ms ± 7ms 35×
Ridesharing game 676µs ± 80µs 160ms ± 7ms 237×
3-Player Leduc poker 42.0ms ± 0.7ms 12.1s ± 1.0s 287×
Sheriff of Nottingham 114ms ± 16ms 50.2s ± 9.6s 442×

Table 25: Comparison of average time per iteration. For each combination of game instance
and algorithm, the mean and standard deviation of the iteration runtime are noted.

Game Target gap Our algorithm Farina and Pipis (2023) Speedup
4-Player Kuhn poker 7× 10−4 32.8s 5h 25m 595×
Ridesharing game 9× 10−5 8.89s 4h 07m 1667×
3-Player Leduc poker 0.224 2.12s 6h 00m 10179×
Sheriff of Nottingham 2.06 2.00s 6h 00m 10800×

Table 26: Comparison of time taken to achieve a particular linear swap equilibrium gap.
The gap is whatever gap was achieved by the algorithm of Farina and Pipis (2023) before
termination.

11 Efficient Φ-Regret Minimization with Low-Degree
Swap Deviations

11.1 Introduction
The long-standing absence of efficient algorithms for computing an NFCE shifted the focus to natural
relaxations thereof, which can be understood through the notion of Φ-regret (Greenwald and Hall, 2003; Stoltz
and Lugosi, 2007; Rakhlin et al., 2011). In particular, Φ represents a set of strategy deviations; the richer the
set of deviations, the stronger the induced solution concept. When Φ contains all possible transformations,
one recovers the notion of NFCE—corresponding to swap regret, while at the other end of the spectrum,
coarse correlated equilibria correspond to Φ consisting solely of constant transformations (aka. external
regret). Perhaps the most notable relaxation is the extensive-form correlated equilibrium (EFCE) (von Stengel
and Forges, 2008), which can be computed exactly in time polynomial in the representation of the game
tree (Huang and von Stengel, 2008). Considerable interest in the literature has recently been on learning
dynamics minimizing Φ-regret (e.g., Morrill et al. (2021b,a); Bai et al. (2022); Bernasconi et al. (2023); Noarov
et al. (2023); Dud́ık and Gordon (2009); Gordon et al. (2008); Fujii (2023); Dann et al. (2023); Mansour
et al. (2022a); Farina and Pipis (2023)). A key reference point in this line of work is the recent construction
of Farina and Pipis (2023), an efficient algorithm minimizing linear swap regret—that is, the notion of Φ-regret
where Φ contains all linear deviations. Such algorithms lead to an ϵ-equilibrium in time polynomial in the
game’s description and 1/ϵ—aka. a fully polynomial-time approximation scheme (FPTAS).

Yet, virtually nothing was known beyond those special cases until recent breakthrough results by Dagan
et al. (2024) and Peng and Rubinstein (2024), who introduced a new approach for reducing swap to external
regret; unlike earlier reductions (Gordon et al., 2008; Blum and Mansour, 2007; Stoltz and Lugosi, 2005),
their algorithm can be implemented efficiently even in certain settings with an exponential number of pure
strategies. For extensive-form games, their reduction implies a polynomial-time approximation scheme (PTAS)
for computing an ϵ-correlated equilibrium; their algorithm has complexity N Õ(1/ϵ) for games of size N ,
which is polynomial only when ϵ is an absolute constant. Instead, we focus here on algorithms with better
complexity poly(N, 1/ϵ), the typical guarantee one hopes for within the no-regret framework.
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11.2 Our Results
In this paper, we take an important step toward closing the gap between the aforementioned results by
developing parameterized algorithms for minimizing Φ-regret. For the sake of exposition, we shall first
describe our results for the special case of Bayesian games with two actions per player, and we then treat
general extensive-form games.

In this context, each player’s strategy space is a hypercube {0, 1}N . We introduce the set of depth-k decision tree
deviations Φk

DT, which can be described as follows. For each of k ∈ N rounds, the deviator first elects a decision
point and receives a recommendation, whereupon the deviator gets to decide which action to follow in that deci-
sion point. The set of deviations ϕ : {0, 1}N → [0, 1]N that can be expressed in the above manner is precisely the
set of functions representable as (randomized) depth-k decision trees on N variables. To connect Φk

DT with the
concepts referred to earlier, we clarify that k = 1 corresponds to linear-swap deviations, while k = N captures
all possible swap deviations. Our first result is a parameterized online algorithm minimizing regret with respect
to deviations in Φk

DT. (All our results are in the full feedback model under a strongly adaptive adversary.)

Theorem 11.1. There is an online algorithm incurring (average) Φk
DT-regret at most ϵ in NO(k)/ϵ2

rounds with a per-round running time of NO(k)/ϵ.

Next, we consider the set Φk
poly consisting of all degree-k polynomials ϕ : {0, 1}N → {0, 1}N . Our result for

this class of deviations mirrors the one for Φk
DT, but with a worse dependence on k.

Theorem 11.2. There is an online algorithm incurring Φk
poly-regret at most ϵ in NO(k3)/ϵ2 rounds

with a per-round running time of NO(k3)/ϵ.

We find those results surprising; we originally surmised that even for quadratic polynomials (k = 2) the
underlying online problem would be hard in the regime ϵ = 1/poly(N). A salient aspect of the above results
is that the learner is allowed to output a probability distribution over {0, 1}N . In stark contrast, and perhaps
surprisingly, when the learner is constrained to output behavioral strategies, that is to say, points in [0, 1]N ,
we show that the problem becomes PPAD-hard even for a degree k = 2 (Theorem 11.5). We are not aware
of any such hardness results pertaining to a natural online learning problem.

We next expand our scope to arbitrary extensive-form games. We will assume here that the branching factor
b of the game is 2—any game can be transformed as such by incurring a log b factor overhead in the depth d
of the game tree. Generalizing Φk

DT described above, we introduce the set of k-mediator deviations Φk
med;

informally, the player here has access to k distinct mediators, which the player can query at any time. Once
again, the case k = 1 corresponds to linear-swap deviations. Further, if X denotes the set of pure strategies,
we let Φk

poly denote the set of all degree-k deviations X → X . We establish similar parameterized results in
extensive-form games, but which may now also depend on the depth of the game tree d.

Theorem 11.3. There is an online algorithm incurring at most an ϵ Φk
poly regret in NO(kd)3

/ϵ2

rounds with a per-round running time of NO(kd)3
/ϵ. For Φk

med both bounds instead scale as NO(k).

N here again denotes the dimension of the strategy space. For a fixed degree k and assuming that the game
tree is balanced, in the sense that d = polylogN , the theorem above guarantees a quasipolynomial complexity
with respect to Φk

poly, even when ϵ is itself inversely quasipolynomial. The complexity we obtain for Φk
med

is more favorable, being polynomial for any extensive-form game. Finally, in light of the connection between
no-regret learning and convergence to correlated equilibria, our results imply parameterized tractability
of the equilibrium concepts induced by Φk

med or Φk
poly.
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11.3 Technical Overview
Our starting point is the familiar template of Gordon et al. (2008) for minimizing Φ-regret, which consists of
two key components. Accordingly, we split our technical overview into two parts.

Approximate fixed points. The first key ingredient one requires in the framework of Gordon et al. (2008)
is an algorithm for computing an approximate fixed point of any function within the set of deviations. In
particular, if X is the set of pure strategies and coX is the convex hull of X , we now work with functions
Φδ ∋ ϕδ : coX → coX , so that fixed points exist by virtue of Brouwer’s theorem.51 This fixed point
computation is—at least in some sense—inherent: Hazan and Kale (2007) observed that minimizing Φδ-regret
is computationally equivalent to computing approximate fixed points of transformations in Φδ. Specifically, an
efficient algorithm minimizing Φδ-regret—with respect to any sequence of utilities—can be used to compute
an approximate fixed point of any transformation in Φδ. Given that functions in Φδ are generally nonlinear,
this brings us close to PPAD-hard territory. Indeed, although functions in Φδ have a particular structure not
directly compatible with prior reductions, we show that they can still simulate generalized circuits even under
low-degree deviations. At first glance, this would seem to contradict the recent positive results of Dagan et al.
(2024) and Peng and Rubinstein (2024).

It turns out that there is a delicate precondition on the reduction of Hazan and Kale (2007) that makes all the
difference: computing approximate fixed points is only necessary if the learner outputs points on coX . In stark
contrast, a crucial observation that drives our approach is that a learner who selects a probability distribution
over X does not have to compute (approximate) fixed points of functions in Φ. Instead, we show that it is
enough to determine what we refer to as an approximate fixed point in expectation. More precisely, for a
deviation Φ ∋ ϕ : X → coX with an efficient representation, it is enough to compute a distribution π ∈ ∆(X )
such that Ex∼π ϕ(x) ≈ Ex∼π x. It is quite easy to compute an approximate fixed point in expectation: take
any x1 ∈ coX , and consider the sequence x1, . . . ,xL ∈ coX such that xℓ+1 := Ex′

ℓ
∼δ(xℓ) ϕ(x′

ℓ) for all ℓ,
where δ : coX → ∆(X ) is a mapping such that Ex′∼δ(x)[x′] = x.52 Then, for π := Eℓ∈[L][δ(xℓ)], we have

E
x∼π

[ϕ(x)− x] = 1
L

L∑
ℓ=1

E
x′

ℓ
∼δ(xℓ)

[ϕ(x′
ℓ)− x′

ℓ] = 1
L

E
x′

L
∼δ(xL)

[ϕ(x′
L)− x1] = O

(
1
L

)
.

This procedure can replace the fixed point oracle required by the template of Gordon et al. (2008), which
is prohibitive when Φ contains nonlinear functions. In fact, even in normal-form games where considering
linear deviations suffices, computing a fixed point is relatively expensive, amounting to solving a linear
system, dominating the per-iteration complexity. Leveraging instead our new reduction, we obtain the
fastest algorithm for computing an approximate correlated equilibrium in the moderate-precision regime
(Corollary 11.13). Beyond normal-form games, our observation can be used to speed up many of the prior
Φ-regret minimizers, which rely on some fixed point operation.

It is worth noting that the discrepancy that has arisen between operating over ∆(X ) versus coX is quite
singular when it comes to regret minimization in extensive-form games. Kuhn’s theorem (Kuhn, 1953) is often
invoked to argue about their equivalence, but in our setting it is the nonlinear nature of deviations in Φ that
invalidates that equivalence.53 To tie up the loose ends, we adapt the reduction of Hazan and Kale (2007) to
show that minimizing Φ-regret over ∆(X ) necessitates computing approximate fixed points in expectation
(Proposition 11.8), and we observe that the reductions of Dagan et al. (2024) and Peng and Rubinstein (2024)
are indeed compatible with computing approximate fixed points in expectation (Section 11.8.3).

51Here, δ : co X → ∆(X ) is used to extend a map ϕ : X → co X to a map ϕδ : co X → co X .
52For technical reasons, it is more convenient to work with functions with domain X , in which case we apply δ to sample a

point in X before applying ϕ. For our applications, there is a particularly natural choice for δ, as introduced in Definition 11.10.
53Kuhn’s theorem is also invalidated in extensive-form games with imperfect recall (Piccione and Rubinstein, 1997; Tewolde

et al., 2023; Lambert et al., 2019), in which there is also a genuine difference between mixed and behavioral strategies. In such
settings, it is NP-hard to even minimize external regret.

107



Regret minimization over the set Φ. The second ingredient prescribed by Gordon et al. (2008) is an
algorithm minimizing external regret but with respect to the set of deviations Φ. The crux in this second step
lies in the fact that, even in normal-form games, Φ contains at least an exponential number of deviations, so
black-box reductions are of little use here. Instead, the problem boils down to appropriately leveraging the
combinatorial structure of Φ, as we explain below.

We will first describe our approach when X = {0, 1}N , and we then proceed with the more technical
generalization to extensive-form games. The key observation is that regret minimization over Φk

DT can be
viewed as a tree-form decision problem of size NO(k). This enables us to rely on usual techniques for dealing
with such problems (e.g., (Zinkevich et al., 2007)), leading to a complexity bound of NO(k). For the set
of low-degree polynomials Φk

poly, we leverage a result in Boolean analysis relating (randomized) low-depth
decision trees with low-degree polynomials (Theorem 11.16), which implies that Φk

poly ⊆ Φ2k3

DT . Consequently,
low-degree polynomials can be reduced to low-depth decision trees, albeit with an overhead in the exponent.

Turning to extensive-form games, we follow a similar blueprint, although there are now additional technical
challenges. First, for the set of k-mediator deviations Φk

med, we show that there is a reduction to a particular
type of DAG-form decision problem of size NO(k), a class of problems recently treated by Zhang et al. (2023b).
That formulation is more suitable than tree-form decision problems when the number of possible histories
far exceeds the number of states, which is precisely the case when the player is gradually querying multiple
mediators as the game progresses.

Finally, we establish a reduction from low-degree polynomials to few mediators; namely, we show that
Φk

poly ⊆ ΦO(kd)3

med , where we recall that d is the depth of the game tree. Our basic strategy is to again leverage
the connection between low-depth decision trees and low-degree polynomials we described earlier. To do so,
we need to cast our problem in terms of functions {0, 1}N → {0, 1}N instead of X → X . To that end, we first
show how to extend a degree-k function f : X → {0, 1} to a degree-kd function f̄ : {0, 1}N → {0, 1}; that is,
f̄ coincides with f on all points in X ⊆ {0, 1}N . This step is where the overhead factor d comes from. The
final technical piece is to show that if each component of ϕ : X → X can be expressed using K mediators,
the same holds for ϕ; the naive argument here incurs another factor of d, but we show that this is in fact not
necessary.

11.4 Hardness of Minimizing Φ-Regret in Behavioral Strategies
In this section, we show that if the learner is constrained to output in reach round a strategy in coX , then
there is no efficient algorithm (under standard complexity assumptions) minimizing Φβ-regret (Theorem 11.5);
here, β : coX → ∆(X ) is the behavioral strategy mapping (introduced in the sequel as Definition 11.10), the
expression of which is not important for the purpose of this section. The key connection is an observation
by Hazan and Kale (2007), which reveals that any Φβ-regret minimizer is inadvertedly able to compute
approximate fixed points of any deviations in Φβ . We then show that the set of induced deviations, even on
the hypercube X = {0, 1}N , is rich enough to approximate PPAD-hard fixed-point problems.

In this context, consider a transformation Φβ ∋ ϕβ : [0, 1]N → [0, 1]N for which we want to compute an
approximate fixed point x ∈ coX ; that is, ∥ϕβ(x) − x∥2 ≤ ϵ, for some precision parameter ϵ > 0. (It is
convenient in the construction below to measure the fixed-point error with respect to ∥ · ∥2.) Hazan and Kale
(2007) observed that a Φβ-regret minimizer can be readily turned into an algorithm for computing fixed points
of any function in Φβ , as stated formally below. Before we proceed, we remind that here and throughout we
operate under a strongly adaptive adversary, which is quite crucial in the construction of Hazan and Kale
(2007).

Proposition 11.4 (Hazan and Kale, 2007). Consider a regret minimizer R operating over [0, 1]N .
If R runs in time poly(N, 1/ϵ) and guarantees RegT

Φβ ≤ ϵ for any sequence of utilities, then there is
a poly(N, 1/ϵ) algorithm for computing an (ϵ

√
N)-fixed point of any ϕβ ∈ Φβ with respect to ∥ · ∥2,

assuming that ϕβ can be evaluated in polynomial time.
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Proposition 11.4 significantly circumscribes the class of problems for which efficient Φβ-regret minimization
is possible, at least when operating in behavioral strategies. Indeed, computing fixed points is in general a
well-known (presumably) intractable problem. In our context, the set Φβ does not contain arbitrary (Lipschitz
continuous) functions [0, 1]N → [0, 1]N , but instead contains multilinear functions from [0, 1]N to [0, 1]N . To
establish PPAD-hardness for our problem, we start with a generalized circuit, and we show that all gates
can be approximately simulated using exclusively gates involving multilinear operations; we defer the formal
argument to the appendix of the full paper (Zhang et al., 2024a). As a result, we arrive at the main hardness
result of this section.

Theorem 11.5. If R outputs strategies in [0, 1]N , it is PPAD-hard to guarantee RegΦβ ≤ ϵ/
√

N ,
even with respect to low-degree deviations and an absolute constant ϵ > 0.

We also obtain a stronger hardness result under a stronger complexity assumption put forward by Babichenko
et al. (2016), which can be found in the appendix of the full paper (Zhang et al., 2024a). At first glance, it
may seem that the above results are at odds with the recent positive results of Dagan et al. (2024) and Peng
and Rubinstein (2024), which seemingly obviate the need to compute approximate fixed points. As we have
alluded to, the key restriction that drives Theorem 11.5 lies in constraining the learner to output behavioral
strategies. In the coming section, we show that there is an interesting twist which justifies the discrepancy
highlighted above.

11.5 Circumventing Fixed Points
The previous section, and in particular Theorem 11.5, seems to preclude the ability to minimize Φ-regret
efficiently when the set of (extended) deviations contains nonlinear functions.54 In this section, we will show
how to circumvent this issue via a relaxed notion of what constitutes a fixed point (Definition 11.6). In the
sequel, we will work with deviations ϕ with domain X instead of coX .

11.5.1 Approximate Expected Fixed Points
The key to our construction is to allow the learner to play distributions over X , not merely points in coX ,
and to use a relaxed notion of a fixed point, formally introduced below.

Algorithm ExpectedGordon: Φ-regret minimizer using fixed points in expectation, using an external regret
minimizer RΦ on Φ

1: initialize z1 ← 1, t← 0
2: procedure NextStrategy():
3: ϕ(t) ← RΦ.NextStrategy()
4: π(t) ← ϵ-expected fixed point of
5: ϕ(t)

6: return π(t)

7: procedure ObserveUtility(ut):
8: set u

(t)
Φ : Φ ∋ ϕ 7→

〈
u(t),Ex(t)∼π(t) ϕ(x(t))

〉
9:

10: RΦ.ObserveUtility(u(t)
Φ )

Definition 11.6. We say that a distribution π ∈ ∆(X ) is an ϵ-expected fixed point of ϕ ∈ (coX )X if
∥Ex∼π[ϕ(x)− x]∥X ≤ ϵ.

The key now is to replace the fixed point oracle in the framework of Gordon et al. (2008) with an oracle that
instead returns an ϵ-fixed point in expectation per Definition 11.6. The learner otherwise proceeds as in the
algorithm of Gordon et al. (2008) (our overall construction is spelled out in Algorithm ExpectedGordon). It

54For linear functions, fixed points can be computed exactly via a linear program.
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is easy to show, following the proof of Gordon et al. (2008), that a fixed point in expectation is still sufficient
to minimize Φ-regret.

Theorem 11.7 (Φ-regret with ϵ-expected fixed points). Suppose that the external regret of RΦ over
Φ after T repetitions is at most RegT . Then, the Φ-regret of ExpectedGordon can be bounded as
RegT + ϵ.

Analogously to Proposition 11.4, it turns out that there is a certain equivalence between minimizing Φ in
∆(X ) and computing expected fixed points:

Proposition 11.8. Consider a regret minimizer R operating over ∆(X ). If R runs in time poly(N, 1/ϵ)
and guarantees RegT

Φ ≤ ϵ for any sequence of utilities, then there is a poly(N, 1/ϵ) algorithm
for computing (ϵDX )-expected fixed points of ϕ ∈ Φ, assuming that we can efficiently compute
Ex(t)∼π(t) [ϕ(x(t))− x(t)] at any time t. Here, DX is the diameter of X with respect to ∥ · ∥2.

The proof proceeds similarly to Proposition 11.4, and so we defer it to the appendix of the full paper (Zhang
et al., 2024a). Next, we present a method for computing approximate expected fixed points of functions
ϕ ∈ Φ without having to solve a PPAD-hard problem.

11.5.2 Extending Deviation Maps to coX
First, since we will work both over coX and distributions in ∆(X ), we need efficient methods for passing
between them. To that end, we introduce the following notion.

Definition 11.9. A map δ : coX → ∆(X ) is

• consistent if Ex′∼δ(x) x
′ = x, and

• efficient if, given some ϕ ∈ Φ and x ∈ coX , it is easy to compute ϕδ(x) := Ex′∼δ(x) ϕ(x′).

We will call the map ϕδ : coX → coX the extended map of ϕ.

One may ask why we use this indirect method of defining ϕδ rather than simply directly using the representation
of ϕ (for example, as a polynomial) to extend ϕ to coX . The answer is that, even assuming that ϕ : X → X
is represented as a multilinear polynomial (which is the representation assumed in the majority of this paper),
naively extending that polynomial to domain coX will not necessarily result in a function ϕ̄ : coX → coX .
For an example, consider the decision problem X depicted in Figure 27, and consider the function ϕ : X → X
given by ϕ(x) = (x1 + x3, x2x4, x2x5, x2, 0). One can easily check by hand that ϕ is indeed a function X → X ,
but also that, for the strategy x = (1/2, 1/2, 0, 1/2, 0) ∈ coX , we have ϕ(x) = (1/2, 1/4, 0, 1/2, 0) /∈ coX .
Thus, we need a more robust way of extending functions X → coX to functions coX → coX , ideally one
that is dependent only the function ϕ, not its representation.

We now give two methods of constructing consistent and efficient maps δ : coX → ∆(X ) for tree-form
strategy sets X . The first is the behavioral strategy map.

Definition 11.10. The behavioral strategy map β : coX → ∆(X ) is defined as follows: β(x) is the distribution
of pure strategies generated by sampling, at each decision point j for which x[j] > 0, an action a according
to the probabilities x[ja]/x[j]. Formally,

β(x)[y] :=
∏

ja:x[j]>0,y[ja]=1

x[ja]
x[j] .

It is possible for ϕβ to be not a polynomial even when ϕ is a polynomial, because β is itself not a polynomial.
It is clear that β is consistent. For efficiency, we show the following claim.
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Proposition 11.11. Let β : coX → ∆(X ) be the behavioral strategy map. Let ϕ : X → coX be
expressed as a polynomial of degree at most k, in particular, as a sum of at most O(Nk) terms. Then
there is an algorithm running in time NO(k) that, given ϕ and x ∈ coX , computes ϕβ(x).

Proof. To compute Ex′∼β(x) ϕ(x′), since ϕ is a polynomial, it suffices to compute Ex′∼β(x) m(x′) for multilinear
monomials m of degree at most K, that is, functions of the form mS(x) :=

∏
z∈S x[z] where S ⊆ Z has size

at most k. There are two cases. First, there are monomials that are clearly identically zero: in particular, if
there are two nodes ja, ja′ ⪯ S for a ̸= a′, then mS ≡ 0 because a player cannot play two different actions at
j. For monomials that are not identically zero, we have

E
x′∼β(x)

∏
ja∈S

x[ja] =
∏

ja⪯S:x[j]>0

x[ja]
x[j] ,

which is computable in time O(kd). Thus, the overall time complexity is O(kdNk) ≤ NO(k).

The behavioral strategy map is in some sense the canonical strategy map: when one writes a tree-form
strategy x ∈ coX without further elaboration on what distribution ∆(X ) it is meant to represent, it is often
implicitly or explicitly assumed to mean the behavioral strategy.

The behavioral strategy map has the unfortunate property that it usually outputs distributions of exponentially-
large support; indeed, if x ∈ relint coX then β(x) is full-support.

The second example we propose, which we call a Carathéodory map, always outputs low-support distributions.
In particular, for any x ∈ coX , Carathéodory’s theorem on convex hulls guarantees that x is a convex
combination of N pure strategies55 x1, . . . ,xN ∈ X . Grötschel et al. (1981, Theorem 3.9) moreover showed
that there exists an efficient algorithm for computing the appropriate convex combination. Thus, fixing some
efficient algorithm for this computational problem, we define a Carathéodory map γ : coX → ∆(X ) to be
any consistent map that returns a distribution of support at most N . Given such a mapping, computing
ϕγ(x) is easy: one simply writes x =

∑
i αixi by computing γ(x), and returns ϕγ(x) =

∑
i αiϕ(xi). This

only requires a poly(N)-time computation of γ, and N evaluations of the function ϕ. As before, when ϕ is a
degree-k polynomial, the time complexity of computing ϕγ is bounded by NO(k).

11.5.3 Efficiently Computing Fixed Points in Expectation
Now let δ : coX → ∆(X ) be consistent and efficient. Consider the following algorithm. Given ϕ ∈ Φ, select
x1 ∈ coX arbitrarily, and then for each ℓ > 1 set xℓ := ϕδ(xℓ−1). Finally, select π := Eℓ∼[L] δ(xℓ) ∈ ∆(X ) as
the output distribution. By a telescopic cancellation, we have∥∥∥ E

x∼π
[ϕ(x)− x]

∥∥∥
X

= 1
L

∥∥∥∥∥
L∑

ℓ=1
E

x∼δ(xℓ)
[ϕ(x)− x]

∥∥∥∥∥
X

≤ 1
L

∥∥∥∥ E
x∼δ(xL)

[ϕ(x)− x1]
∥∥∥∥

X
≤ 2

L
,

as desired. As a result, applying Theorem 11.7, we arrive at the following conclusion.

Theorem 11.12. Let RΦ be an regret minimizer on Φ whose external regret after T iterations is RegT

and whose per-iteration runtime is R1, and assume that evaluating the extended map ϕδ : coX → coX
takes time R2. Then, for every ϵ > 0, there is a learning algorithm on X whose Φ-regret after T
iterations is at most RegT + ϵ and whose per-iteration runtime is O(R1 + R2/ϵ).

The above result provides a full black-box reduction from Φ-regret minimization to external regret minimization
on Φ, with no need for the possibly-expensive computation of a fixed point. We note that the iterates of the
algorithm will depend on the choice of δ—for example, setting δ = β and setting δ = γ will produce different
iterates.

55Applying Carathéodory naively would give N + 1 instead of N , but we can save 1 because the tree-form strategy set is never
full-dimensional as a subset of {0, 1}N .
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11.5.4 Application for Faster Computation of Correlated Equilibria
An important byproduct of Theorem 11.12 is that it leads to faster algorithms for computing equilibria
even in settings where fixed points can be computed in polynomial time. In particular, let us focus for
simplicity on n-player normal-form games with a succinct representation. Here, each player i ∈ [n] selects
as strategy a probability distribution πi ∈ ∆(Ai), where we recall that Ai is a finite set of available
actions. The expected utility of player i is given by ui(π1, . . . , πn) := Ea1∼π1,...,an∼πn [ui(a1, . . . , an)], where
ui : A1 × · · · × An → [−1, 1]. We assume that there is an expectation oracle that computes the vector

(ui(ai, π−i))i∈[n],ai∈Ai
(13)

in time bounded by EO(n, A), where A := maxi |Ai|; it is known that EO(n, A) ≤ poly(n, A) for most
interesting classes of succinct classes of games (Papadimitriou and Roughgarden, 2008).

In this context, one can apply Theorem 11.12 in conjunction with the algorithm of Blum and Mansour (2007),
instantiated with multiplicative weights update, to arrive at the following result.

Corollary 11.13. For any n-player game in normal form, there is an algorithm that computes an
ϵ-correlated equilibrium and runs in time

O

(
A log A

ϵ2

(
EO(n, A) + n

A2

ϵ

))
.

Assuming that the oracle call to (13) (EO(n, A)) does not dominate the per-iteration running time,56

Corollary 11.13 gives (to our knowledge) the fastest algorithm for computing ϵ-correlated equilibria in the
moderate-precision regime 1/A

ω
2 −1 ≤ ϵ ≤ 1/ log A, where ω ≈ 2.37 is the exponent of matrix multiplica-

tion (Williams et al., 2024); without fast matrix multiplication, which is widely impractical, the lower bound
instead reads ϵ ≥ 1/

√
A. We provide a detailed comparison to previous algorithms in the appendix of the full

paper (Zhang et al., 2024a). Finally, we stress that similar improvements can be obtained beyond normal-form
games using the template of Theorem 11.12.

11.6 Low-Degree Regret on the Hypercube
In this section, we let X be the hypercube {0, 1}N . Hypercubes are linear transformations of tree-form
decision problems; in particular, for Bayesian games in which each player has exactly two actions, the strategy
space of every player is, up to linear transformations, a hypercube. Since our results are particularly clean for
the hypercube case, we start with that. For an integer k ≥ 0, we define the set of deviations Φk

DT as follows:

1. The deviator observes an index j0 ∈ [N ].

2. For i = 1, . . . , k: The deviator selects an index ji ∈ [N ], and observes x[ji].

3. The deviator selects a0 ∈ {0, 1}.

We call attention to the order of operations. In particular, each query j is allowed to depend on previous
observed x[j]s. We will assume (WLOG) that the deviator always chooses k distinct indices j.

The above process describes a tree-form decision problem of size NO(k). Terminal nodes in this decision problem
are identified by the original index j0 ∈ [N ], the queries j1, . . . , jk ∈ [N ], their replies a1, . . . , ak ∈ {0, 1},
and finally the action a0 ∈ {0, 1} that is played. Each tree-form strategy q in this decision problem defines
a function ϕq : X → coX , which is computed by following the strategy q through the decision problem.
Formally, we have

ϕq(x)[j0] =
∑

j1,a1,...,jk,ak

q[j0, j1, a1, . . . , jk, ak, 1]
k∏

i=1
x[ji, ai]

56This is indeed the case in, for example, polymatrix games.
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where x[ji, ai] = x[ji] if ai = 1, and 1− x[ji] if ai = 0. Hence ϕq is a degree-k polynomial in x.

We define Φk
DT as the set of such functions ϕq. The “DT” in the name Φk

DT stands for decision tree: the
set of functions ϕ : X → coX that can be expressed in the above manner is precisely the set of functions
representable as (randomized) depth-k decision trees on N variables.

For intuition, we mention the following special cases:

• Φ0
DT is the set of external deviations.

• Φ1
DT is the set of all single-query deviations, which Fujii (2023) showed to be equivalent to the set of all

linear deviations when X is a hypercube.

• ΦN
DT is the set of all swap deviations.

Since q 7→ ϕq(x)[i] is linear, it follows that q 7→ ⟨u, ϕq(x)⟩ is also linear for any given u ∈ Rn. Therefore,
a regret minimizer on Φk

DT can be constructed starting from any regret minimizer for tree-form decision
problems; for example, counterfactual regret minimization (Zinkevich et al., 2007), or any of its modern
variants.

Proposition 11.14. There is a NO(k)-time-per-round regret minimizer on Φk
DT whose external regret

is at most ϵ after NO(k)/ϵ2 rounds.

Thus, combining with Proposition 11.11 and Theorem 11.12, we immediately obtain a Φk
DT-regret minimizer

with the following complexity.

Corollary 11.15. There is a NO(k)/ϵ-time-per-round regret minimizer on X whose Φk
DT-regret is at

most ϵ after NO(k)/ϵ2 rounds.

Next, we relate depth-k decision trees to low-degree polynomials. Let Φk
poly be the set of degree-k polynomials

ϕ : X → X . We appeal to a result from the literature on Boolean analysis.

Theorem 11.16 (Midrijanis, 2004). Every degree-k polynomial f : {0, 1}N → {0, 1} can be written as
a decision tree of depth at most 2k3.

In particular, Φk
poly ⊆ Φ2k3

DT . Corollary 11.15 thus also implies a Φk
poly-regret minimizer:

Corollary 11.17. Let X = {0, 1}N . There is an NO(k3)/ϵ-time-per-round regret minimizer on X
whose Φk

poly-regret is at most ϵ after NO(k3)/ϵ2 rounds.

It is reasonable to ask whether the above result generalizes to polynomials ϕ : X → coX . Indeed, when k ≤ 1
or k = N , every degree-k polynomials ϕ : X → coX can be written as a convex combination of degree-k
polynomials ϕ : X → X , even for arbitrary tree-form decision problems.57 However, this is not generally true.
A brute-force search shows that the polynomial ϕ : {0, 1}4 → [0, 1]4 given by

ϕ(x1, x2, x3, x4) = x1 − x1x2 −
1
2x1x3 + 1

2x2x3 + 1
2x3x4

is quadratic, but it is not a convex combination of quadratics whose range is {0, 1}4. Perhaps more glaringly, if
one could efficiently represent the set of quadratic functions ϕ : {0, 1}N → [0, 1]N , then one could in particular
decide whether a given quadratic function ϕ : {0, 1}N → RN has range [0, 1]N . But this is a coNP-complete
problem.

57For degree 0 and N this is trivial; for degree 1 it is due to Zhang et al. (2024d).
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11.7 Extensive-Form Games
The goal of this section is to extend the results in the previous section to the extensive-form setting, that is,
to generalize them to all tree-form decision problems.

11.7.1 Interleaving Decision Problems
In this section, we define operations of merging decision problems that will be very useful as notation in
the subsequent discussion. Given two decision problems X and Y with node sets S1 and S2 respectively, we
introduce three new decision problems.

Definition 11.18. The dual X̄ of X is the decision problem identical to X , except that the decision points
and observation points have been swapped.

Definition 11.19. The interleaving X ⊗ Y is the tree-form decision problem defined as follows. There is
a state s = (s1, s2) ∈ S1 × S2. The root state is the tuple (∅,∅). The decision problem is defined by the
player being able to interact with both decision problems, in the following manner. At each state s = (s1, s2):

• If s1 and s2 are both terminal then so is s. Otherwise:

• If either of the sis is an observation point, then so is s. The children are the states (s′
i, s−i) where s′

i is
a child of si. (If both sis are observation points, both children s′

1, s′
2 are selected simultaneously. This

can only happen at the root.)

• Otherwise, s is a decision point. The player selects an index i ∈ {1, 2} at which to act, and a child s′
i

to transition to. The next state is (s′
i, s−i).

It follows immediately from definitions that ¯̄X = X , and ⊗ is associative and commutative. The name
and notation for the dual is inspired by the observation that ⟨x,y⟩ = 1 for all x ∈ X and y ∈ X̄ :
indeed, the component-wise product x[z]y[z] is exactly the probability that one reaches terminal node z by
following strategy x at X ’s decision points and y at X ’s observation points. We also define the notation
X⊗k := X ⊗ · · · ⊗ X , where there are k copies of X .

In X ⊗ Y, the same state (s1, s2) can be reachable through possibly exponentially many paths, because
the learner may choose to interleave actions in X with actions in Y in any order. Thus, each state (s1, s2)
corresponds to actually exponentially many histories in X ⊗ Y. In the discussion below, we will therefore
carefully distinguish between histories and states.

In light of the above exponential gap between histories and states, it seems wasteful to represent X ⊗ Y
as a tree. Indeed, Zhang et al. (2023b) studied DAG-form decision problems, and showed that regret
minimization on them is possible so long as the DAG obeys some natural properties. We state here an
immediate consequence of their analysis, which we will use as a black box. Intuitively, the below result states
that, as long as utility vectors also only depend on the (terminal) state s that is reached, regret minimization
on an arbitrary interleaving of decision problems X1 ⊗ · · · ⊗ Xk is possible, and the complexity depends only
on the number of states.

Theorem 11.20 (Consequence of Zhang et al., 2023b, Corollary A.4). Let X := X1 ⊗ · · · ⊗ Xk, where
Xi has terminal node set Zi. Let Z := Z1 × · · · × Zk be the set of terminal states for X . For each
such terminal state z ∈ Z, let V (z) be the set of histories of X whose state is z. Define the projection
π : X → RZ by

π(x)[z] =
∑

v∈V (z)

x[v].

Then there exists an efficient regret minimizer on π(X ) := {π(x) : x ∈ X} ⊂ RZ : its per-round
complexity is poly(|Z|), and its regret is ϵ after poly(|Z|)/ϵ2 rounds.

Whenever we speak of regret minimizing on interleavings, it will always be the case that utility vectors depend
only on the state, so we will always be able to apply the above result. We will call vectors in π(X ) reduced
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Figure 27: An example of a tree-form decision problem. Decision points are black squares
with white text labels; observataion points are white squares. Edges are labeled with action
names, which are numbers. Pure strategies in this decision problem are identified with vectors
x = (x1, x2, x3, x4, x5) ∈ {0, 1}5 satisfying 1− x1 = x2 + x3 = x4 + x5.

strategies.

Before proceeding, it is instructive to describe in more detail a result of Zhang et al. (2024d), which we will
also use later, in the language of this section. Let X and Y be any two decision problems with terminal node
sets Z1 and Z2 respectively. A reduced strategy q ∈ π(X ⊗ Ȳ) induces a linear map ϕq : Y → coX , given by

ϕq(y)[z1] =
∑

z2∈Z2

q[z1, z2]y[z2].

It is instructive to think, as Zhang et al. (2024d) detailed extensively in their paper, about what strategies
q ∈ π(X ⊗ Ȳ) represent, and why they induce the linear maps ϕq. Decision points j in Y become observation
points in X ⊗ Ȳ—at these observation points, the player should observe the action taken by strategy y at
j. The player in X ⊗ Ȳ is given the ability to query the strategy y by taking the role of the environment
in Y, while the environment, holding a strategy y ∈ Y, takes the role of the player and answers decision
point queries with the actions that it plays. The player then uses these queries to inform how it plays in the
true decision problem X . This is the sense in which q induces a map ϕq: the output ϕq(y) is precisely the
strategy that would be played if the environment in X ⊗ Ȳ answers the queries by consulting the strategy
y. We will call a device that answers queries using strategy y a mediator holding strategy y. Zhang et al.
(2024d) then showed the following fact, which we will use critically and repeatedly in the rest of this paper.

Theorem 11.21 (Zhang et al., 2024d, Theorem A.2). Every linear map ϕ : Y → coX is induced by
some reduced strategy q ∈ π(X ⊗ Ȳ).

11.7.2 Efficient Low-Degree Swap-Regret Minimization in Extensive-Form
Games

We now proceed with generalizing the results of Section 11.6 to extensive-form games.

Let X be any decision problem of dimension N and depth d. We will assume WLOG that every decision
point in X has branching factor exactly 2. This is without loss of generality, but it incurs a loss of O(log b),
where b is the original branching factor, in the depth. Thus, in the below bounds, when d appears, it should
be read as O(d log b).

Using the notation we have now established, we define the set of k-mediator deviations Φk
med as the set of

reduced strategies in the decision problem X ⊗X̄⊗k. That is, the player has access to not one but k mediators,
all holding strategy x, which the player can query at any time. This is a significant advantage over having
just one mediator, since the player can send different queries to each of the k mediators (who must all reply
according to x), and therefore can learn more about the strategy x than it could have otherwise. We will call
the responses given by the mediator action recommendations.
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Figure 28: A representation of the deviation ϕ(x) = (x1 + x3, x2x4, x2x5, x2, 0) (discussed
in Section 11.5.2) in the decision problem X in Figure 27, as a strategy in X ⊗ X̄ ⊗ X̄ , i.e.,
with k = 2 mediators. (For an example of a one-mediator deviation, see Zhang et al. (2024d,
Figure 1).) Again, black squares are decision nodes and white squares are observation nodes.
Nodes are labeled with their state representations: the state in X first (in blue), and the
two mediator states after (in red). Similarly, blue edge labels indicate interactions with the
decision problem (i.e., playing actions and receiving observations in X ), and red edge labels
indicate interactions with the mediators (i.e., querying and receiving action recommendations
from the mediators). Redundant edges (such as those in which the decision problem in
X has terminated) are omitted. The deviation is shown in thick black lines. For example,
ϕ2(x) = x2x4 because the only state in which the deviator plays action 2 is when the mediator
state is (2,4). ϕ1(x) = x1 + x3 because the deviator plays action 1 at mediator states (1,1)
and (3,0), which would give the formula ϕ1(x) = x2

1 + x3x0 (where x0 := 1− x1), but one
can easily check that x2

1 + x3x0 = x1 + x3 for all x ∈ X .

Reduced strategies q ∈ π(X ⊗ X̄⊗k), once again, induce functions ϕq : X → coX given by

ϕq(x)[z] =
∑

z1,...,zk

q[z, z1, . . . , zk]
k∏

i=1
x[zi],

and again in particular we have that ϕq is a degree-k polynomial. We define Φk
med as the set of such deviations.

For intuition, we once again pose a few special cases:

• When the original decision problem’s decision space is ∆N
2 (i.e., the decision problem consists of a

single root observation point with N children, each of which is a decision point with two actions), we
have Φk

DT = Φk
med. Thus, the results in this section strictly generalize those in the previous section.

• Φ0
med and ΦN

med are, as before, the sets of external and swap deviations respectively.

• Φ1
med is, by Theorem 11.21, the set of all linear deviations.

In this context, applying Theorem 11.20 gives an efficient Φk
med-regret minimizer:
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Theorem 11.22. There is an NO(k)-time-per-round regret minimizer on Φk
med whose external regret

is at most ϵ after NO(k)/ϵ2 rounds.

Thus, once again Proposition 11.11 and Theorem 11.12 have the following consequence.

Corollary 11.23. There is a NO(k)/ϵ-time-per-round regret minimizer on X whose Φk
med-regret is at

most ϵ after NO(k)/ϵ2 rounds.

Next, we discuss extensions of our result to low-degree polynomials. Unfortunately, we cannot directly apply
Theorem 11.16 to conclude the existence of a regret minimizer on X with Φk

poly-regret growing as NO(k3)/ϵ2.
There are two issues in attempting to do so.

First, when X is not the hypercube, polynomials f : X → {0, 1} are not total functions. That is, it is not
necessarily the case that degree-k polynomials f : X → {0, 1} can be extended to degree-k polynomials
f̄ : {0, 1}N → {0, 1}, which is required in order to apply Theorem 11.16.58 For an example of this, consider
X = D4 where DN is the standard basis in RN , that is, DN = {ei : i ∈ [N ]} where ei ∈ RN is the ith basis
vector (in other words, DN is the set of vertices of the probability simplex ∆(N)). Let f : D4 → {0, 1} given
by f(x) = x1 + x2. Then f is linear, but there is no linear f̄ : {0, 1}4 → {0, 1} extending f . Indeed, there is
a more general manifestation of this phenomenon:

Proposition 11.24. For every N , there exists a linear map f : DN → {0, 1} such that any extension
f̄ : {0, 1}N → {0, 1} of f must have degree at least Ω(log N).

Proof. Let f̄ : {0, 1}N → {0, 1} be any degree-k function. By Theorem 3.4 of O’Donnell (2014), f̄ is a
k2k-junta, that is, f̄(x) depends on at most k2k entries of x. Now consider the map f : DN → {0, 1} given
by f(x) =

∑
i≤N/2 xi. Let f̄ : {0, 1}N → {0, 1} be an extension of f . Then f̄ depends on at least N/2− 1

inputs: if f̄(0) = 0 then f̄ depends on at least x1, . . . ,x⌊N/2⌋, and if f̄(0) = 1 then f̄ depends on at least
x⌊N/2⌋+1, . . . ,xN . Thus, we have N/2− 1 ≤ k2k, which upon rearraging gives k ≥ Ω(log N).

The second issue is the following. Suppose that K mediators were enough to represent a function f : X → {0, 1}.
How does one then represent a function ϕ : X → X ? Each coordinate of ϕ could be represented using K
mediators, but that need not mean the whole function can. In game-theoretic terms, representing a coordinate
of ϕ(x) allows the player to play a single action, not necessarily the whole game. Naively, playing the whole
game would seem to require Kd mediators: K mediators for every level of the decision tree, to compute
which action to take at each level.

We will show that it is possible to circumvent both of these issues: the first with a loss of O(d) in the degree
of the polynomial that is representable, and the second with no additional loss. In particular, we state our
main result below.

Theorem 11.25. Φk
poly ⊆ ΦO(kd)3

med . Therefore, for every k, there is a NO(kd)3
/ϵ-time-per-round

algorithm whose Φk
poly-regret at most ϵ after NO(kd)3

/ϵ rounds.

58Formally, we call f̄ : {0, 1}N → {0, 1} an extension of f : X → {0, 1} if f̄ agrees with f on X .
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11.8 Discussion and Applications
In this section, we discuss various implications and make several remarks about the framework and results
that we have introduced.

11.8.1 Convergence to Correlated Equilibria
From Theorems 11.22 and 11.25 and Proposition 9.4 it follows that, given a game Γ where the dimension of
each player’s decision problem is at most N , we have the following results.

Corollary 11.26. An ϵ-k-mediator equilibrium can be computed in time NO(k)/ϵ3.

Corollary 11.27. An ϵ-degree-k-swap equilibrium can be computed in time NO(kd)3
/ϵ3.

The issue of representing the induced correlated distribution is discussed in the appendix of the full pa-
per (Zhang et al., 2024a).

11.8.2 Strict Hierarchy of Equilibrium Concepts
Let c ∈ {med, poly}. For every k ≥ 0, let Ek

c (Γ) be the set of Φk
c -equilibria in Γ. It is clear from definitions

that Ek
c (Γ) ⊆ Ek−1

c (Γ). Further, even for normal-form games, it is known that coarse-correlated equilibria are
not generally equivalent to correlated equilibria, so at least one of these inclusions is strict in some games.
We now show that all of these inclusions are strict, so that the deviations Φk

c form a strict hierarchy of
equilibria.59

Proposition 11.28. For every k ≥ 1, there exists a game Γ such that Ek
c (Γ) ⊊ Ek−1

c (Γ).

Proof. Consider the two-player game Γ defined as follows.

• P1’s strategy space is X = {−1, 1}k. Player 2’s strategy space is simply Y = {−1, 1}.60

• P1’s utility function is u1(x, y) = x1y. That is, P1 would like to set x1 = y. P2 gets no utility.

Consider the correlated profile π defined as follows: π is uniform over the 2k pure profiles (x, y) ∈ X × Y
such that y = x1x2 . . . xk. P1’s expected utility is clearly 0, and there is a swap (i.e., Φk

c ) deviation that
yields a profit of 1, namely x 7→ (x1x2 . . . xk, . . . ). (it does not matter what the swap deviation plays at
coordinates other than the first one.) But, since all the xis are independent, no function of degree less than
k can have positive correlation with x1x2 . . . xk, and thus, there are no profitable deviations of degree less
than k. Thus, π is a Φk−1

c -equilibrium, but not a Φk
c -equilibrium.

59The below result constructs a game that depends on k. It is not the case that there exists a single game for which the
inclusion hierarchy is strict: for example, for k ≥ N , the set Φk

c will already contain all the deviations, so Ek
c (Γ) = EN

c (Γ) for
every k ≥ N .

60These strategy spaces are not technically tree-form strategy spaces, but they are linear transformations of tree-form strategy
spaces, so one can also rephrase this argument over tree-form strategy spaces. For cleanliness of notation, we stick to {−1, 1}k

as the strategy space.
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11.8.3 Characterization of Recent Low-Swap-Regret Algorithms in Our Frame-
work

We have, throughout this paper, introduced and used a framework of Φ-regret that involves fixed points
in expectation. Proposition 11.8 shows that the ability to compute fixed points in expectation is in some
sense necessary for the ability to minimize Φ-regret. It is instructive to briefly discuss how the recent
swap-regret-minimizing algorithm of Dagan et al. (2024) and Peng and Rubinstein (2024) fits into this
framework. Their algorithm makes no explicit reference to fixed-point computation, nor to the minimization
of external regret over swap deviations ϕ—they do not explicitly invoke the framework we use in this paper,
nor that of Gordon et al. (2008). Where is the expected fixed point hidden, then? While we will not present
their entire construction here, it suffices to state the following property of it. At every round t, the learner
outputs a distribution π(t) ∈ ∆(X ) that is uniform on L strategies x(t,1), . . . ,x(t,L). The way to map this
into our framework is to consider π(t) an approximate fixed point in expectation of the “function”61 ϕ(t) that
maps x(t,ℓ) 7→ x(t,ℓ+1) for each ℓ = 1, . . . , L− 1. With this choice of ϕ(t), their algorithm indeed fits into our
framework.

11.8.4 Revelation Principles (or Lack Thereof)
Most notions of correlated equilibrium obey some form of revelation principle. Informally, one can treat a
player attempting to deviate profitably from a correlated equilibrium as an interaction between a mediator
(who sends useful information to the player) and the player (who tries to play optimally by using the mediator).
When studying the regret of online algorithms, one assumes that the interaction with the mediator is canonical:
the mediator holds with it some sampled strategy profile (x1, . . . ,xn) ∼ π, and in equilibrium every player
indeed plays xi. We say that the revelation principle holds for a particular notion of equilibrium if allowing
non-canonical equilibria would not expand the set of equilibria. In the appendix of the full paper (Zhang
et al., 2024a), we give a rather general formalization of this notion, which is enough to encompass all the
notions of correlated equilibrium discussed in the paper. We show that, in this formalism, the revelation
principle does not hold for k-mediator equilibria or degree-k swap equilibria when k > 1, and indeed in both
cases the set of outcomes that can be induced by non-canonical equilibria is the set of linear-swap outcomes.

11.9 Conclusions and Future Work
In conclusion, we have provided a new family of parameterized algorithms for minimizing Φ-regret in
extensive-form games. Our results capture perhaps the most natural class of functions interpolating between
linear-swap and swap deviations, namely degree-k deviations. Along the way, we refined the usual template
for minimizing Φ-regret—taught in many courses on algorithmic game theory and online learning—which
revolves around (approximate) fixed points (Gordon et al., 2008; Blum and Mansour, 2007; Stoltz and Lugosi,
2005). Instead, we showed that it suffices to rely on a relaxation that we refer to as an approximate fixed
point in expectation, which—unlike actual fixed points—can always be computed efficiently. Our refinement
of the usual template for minimizing Φ-regret has an independent interest beyond extensive-form games.
For example, it can speed up the computation of approximate correlated equilibria even in normal-form
games, as it obviates the need to solve a linear system in every round. As in the recent works by Dagan et al.
(2024) and Peng and Rubinstein (2024), a crucial feature of our approach is to allow the learner to select a
distribution over pure strategies, for otherwise we showed that regret minimization immediately becomes
PPAD-hard (under a strongly adaptive adversary).

There are many interesting avenues for future research. First, the complexity of our algorithm pertaining
degree-k deviations depends exponentially on the depth of the game tree. We suspect that such a dependency
could be superfluous, i.e., that there should be an Npoly(k)-round algorithm for minimizing regret against
degree-k deviations.

It would also be interesting to devise parameterized algorithms for degree-k deviations that recover as a
special case the PTAS of Peng and Rubinstein (2024) and Dagan et al. (2024), so as to smoothly interpolate

61“Function” is in quotes because the stated ϕ may not be a function at all; for example, the sequence x(t,1), . . . ,x(t,L) may
contain repeats yet be aperiodic.
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between existing results for linear-swap regret (Farina and Pipis, 2023) and the aforementioned results for
swap regret.

Finally, perhaps the most important question is to understand the computational complexity of computing
Φ-equilibria in extensive-form games. In particular, our results raise the interesting question of whether there
is an algorithm (in the centralized model) for computing in polynomial time an exact correlated equilibrium
induced by low-degree deviations. Extending the paradigm of Papadimitriou and Roughgarden (2008) in
that setting presents several challenges, not least because computing fixed points—which are crucial for
implementing the separation oracle (Papadimitriou and Roughgarden, 2008)—is now computationally hard.
Relatedly, we suspect that there is an inherent connection between fixed points and correlated equilibria, in
the spirit of the equivalence established by Hazan and Kale (2007) in the adversarial regime.

12 Steering No-Regret Learners to a Desired Equilib-
rium

12.1 Introduction
Any student of game theory learns that games can have multiple equilibria of different quality—for example,
in terms of social welfare. As such, a foundational problem that has received tremendous interest in the
literature revolves around characterizing the quality of the equilibrium reached under no-regret learning
dynamics. The outlook that has emerged from this endeavor, however, is discouraging: typical learning
algorithms can fail spectacularly at reaching desirable equilibria. This is rather dramatically illustrated in
the example of Figure 29 (second panel). Learning agents initialized at either A, B, or C will in fact converge
to the Pareto-pessimal Nash equilibrium of the game (bottom-left corner); only an initialization close to the
Pareto-dominant equilibrium (such as D in the top-right corner) will end up with the desired outcome.

Our goal in this paper is to develop methods to steer learning agents toward better equilibrium outcomes. To
do so, we will use a mediator that can observe the agents playing the game, give advice to the agents (in the
form of action recommendations), and pay the agents as a function of what actions they played. Our goal is
to develop algorithms that allow the mediator to steer agents to a target equilibrium, while not spending too
much money doing so. Critically, our only assumption on the agents’ behavior is that they have no regret
in hindsight. This is a fairly mild assumption compared to the assumptions made by many past papers on
similar topics. We will elaborate on the comparison to related work in the full paper (Zhang et al., 2024b).

Beyond the obvious relation to equilibrium selection, our model also has implications for the problem of
information design and Bayesian persuasion (e.g., Kamenica and Gentzkow 2011). Indeed, we will show that
we can steer players not only to any Nash equilibrium but to any Bayes-correlated equilibrium (BCE)—the
solution concept most naturally associated with the problem of information design. We will also show that it
is possible, in certain cases, to steer agents toward particular equilibria in an online manner, that is, compute
the optimal equilibrium while steering players toward it.

12.2 Summary of Our Results
Here we summarize our model and results. There is a fixed, arbitrary extensive-form game Γ, being played
repeatedly over rounds t = 1, . . . , T . Players’ rewards are assumed to be normalized to range [0, 1]. The
players are assumed to play in such a way that their regret increases sublinearly as a function of T . This is a
fairly natural and mild assumption (as discussed in the previous paragraph), and moreover there are many
well-known algorithms that players can use to efficiently achieve sublinear regret in extensive-form games,
perhaps the best-known of which is counterfactual regret minimization (Zinkevich et al., 2007), which has
regret T 1/2 ignoring game-dependent constants.62

62Throughout the introduction, game-dependent constants are omitted for clarity and to emphasize the dependence on T . In
all cases, the omitted game-dependent constant is polynomial in the number of nodes in the game tree.
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Figure 29: Left: An extensive-form version of a stag hunt. Chance plays uniformly at
random at the root note, and the dotted line connecting the two nodes of Player 2 indicates
an infoset: Player 2 cannot distinguish the two nodes. The game has two equilibria: one at
the bottom-left corner, and one at the top-right corner (star). The latter is Pareto-dominant.
Introducing vanishing realized payments alters the gradient landscape, steering players to the
optimal equilibrium (star) instead of the suboptimal one (opposite corner). The capital letters
show the players’ initial strategies. Lighter color indicates higher welfare and the star shows
the highest-welfare equilibrium. Further details are in the appendix of the full paper (Zhang
et al., 2024b).

Broadly speaking, the goal of our paper is to design methods of steering the learning behavior of the players
so that they reach desirable equilibria instead of undesirable ones. We do this by introducing a mediator to
the game. After each round, the mediator observes how the players played the game, and has the power to
give nonnegative payments p

(t)
i to each player i at each round t. We will first consider the case where a target

pure Nash equilibrium is given as part of the problem instance.

A few observations follow easily. If the mediator’s payments are not bounded, the mediator can trivially
steer the players toward any outcome at all—not just equilibrium outcomes—by simply paying the players
to play that outcome. We must therefore somehow bound the budget of the mediator. We will study two
different budgets: a per-round budget, which constrains the individual payments p

(t)
i , and a total budget,

which constrains their sum over time. We start by showing that the total budget must be allowed to grow
with time.

Proposition 12.1 (Informal version of Proposition 12.10). For any fixed total budget B, there is a
time horizon T large enough that the steering problem is impossible.

As a result, the total budget must be allowed to grow with the time horizon, but yet, for the problem to be
interesting, the budget cannot be allowed to grow too fast. We thus focus on the regime where the budget is
allowed to grow with T , but only sublinearly—that is, the average per-round payment must vanish in the limit
T →∞. We are interested in algorithms for which both the average budget and rate of convergence to the
desired equilibrium can both be bounded by T −c for some absolute constant c > 0. We show the following.

Theorem 12.2 (Informal version of Theorem 12.12). Steering to pure-strategy equilibria is possible
in normal-form games, with absolute constant per-round budget. The average budget and rate of
convergence to equilibrium are both T −1/4.

Intuitively, the mediator sends payments in such a way as to 1) reward the player a small amount for playing
the equilibrium, and 2) compensate the player for deviations of other players. The goal of the mediator is to
set the payments in such a way that the target equilibrium actions become strictly dominant for the players,
and therefore the players must play them.

Next we turn to the extensive-form setting. Settings such as information design, in which first a signal is
designed, and then players take actions, are naturally extensive-form games. We distinguish between two
settings: the full feedback setting, in which the mediator observes every player’s entire strategy at every round,

121



and the trajectory-feedback setting, in which the mediator only observes the trajectories that are actually
played by the players.63

The full feedback setting yields results similar to the normal-form setting.

Theorem 12.3 (Informal version of Theorem 12.14). Steering to pure-strategy equilibria is possible in
extensive-form games with full feedback, with absolute constant per-round budget. The average budget
and rate of convergence to equilibrium are both T −1/4.

The trajectory feedback case, however, is quite different.

Theorem 12.4 (Informal version of Theorem 12.16). With only trajectory feedback and absolute
constant per-round budget, steering in general extensive-form games is impossible, even to the welfare-
maximizing pure Nash equilibrium.

Intuitively, the discrepancy is because, with only trajectory feedback, it is not possible to make the target
equilibrium dominant using only nonnegative, vanishing-on-average payments, so the techniques used for
the previous results cannot apply. This phenomenon can already be observed in the “stag hunt” game in
Figure 29: for Player 2, Stag (S) cannot be a weakly-dominant strategy unless a payment is given at the
boxed node, which would be problematic because such payments would also appear in the welfare-optimal
equilibrium (S, S). Thus, one needs to be more clever. Fortunately, steering is still possible in this setting,
but only if the per-round budget is also allowed to grow:

Theorem 12.5 (Informal version of Theorem 12.14). Steering to pure-strategy equilibria is possible in
extensive-form games with full feedback. The average budget and rate of convergence to equilibrium
are both T −1/8, and the per-round budget grows at rate T 1/8.

Next, we generalize our results beyond pure Nash equilibria. To do this, we will require the mediator to have
the additional ability to give advice to the players, in the form of action recommendations. First, we show
that using advice is a necessary condition for steering to even mixed Nash equilibria.

Theorem 12.6 (Informal version of Theorem 12.19). Without advice, there exists a normal-form
game in which the unique optimal Nash equilibrium is mixed, and it is impossible to steer players
toward it.

If we allow advice, it turns out to be possible to steer players not just to mixed Nash equilibria but to a far
broader set of equilibria known as the Bayes-correlated equilibria.

Theorem 12.7 (Informal version of Theorem 12.21). With advice, steering to Bayes-correlated
equilibria is possible in extensive-form games. The conditions and rates are the same as those for pure
Nash equilibria.

Intuitively, the result follows because Bayes-correlated equilibria can be viewed as the pure Nash equilibria
of an augmented game in which the advice is treated as part of the game’s observations. Bayes-correlated
equilibria are a very general solution concept that include, for example, all the extensive-form correlated
equilibria (von Stengel and Forges, 2008) and communication equilibria (Forges, 1986; Myerson, 1986), among
other notions.

Finally, we give an online version of our algorithm, which does not need to know the target equilibrium
beforehand. Instead, given an objective function, the online steering algorithm steers players toward the
optimal equilibrium while computing it.

63This distinction becomes only meaningful for extensive-form games. For normal-form games, the two settings above coincide,
because the “trajectory” in a normal-form game is just a list consisting of each player’s chosen action.
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Steering to Fixed Equilibrium Online Steering
Normal Form or Full Feedback T −1/4 (Theorem 12.14) T −1/6 (Theorem 12.25)

Extensive Form and Trajectory Feedback T −1/8 (Theorem 12.18) Open problem

Table 30: Summary of our positive algorithmic results. We hide game-dependent constants
and logarithmic factors, and assume that regret minimizers incur regret T −1/2.

Theorem 12.8 (Informal version of Theorem 12.25). In the full-feedback setting with advice and
absolute constant per-round budget, it is possible to learn the optimal equilibrium while simultaneously
steering the players toward it. The average budget and rate of convergence to equilibrium are both
T −1/6.

As before, in normal-form games, full feedback and trajectory feedback essentially coincide, so online steering
also turns out to be possible in normal-form games with trajectory feedback. In extensive-form games,
however, the problem of trajectory-feedback online steering seems more difficult, and we leave it as an open
problem. We summarize the rates we obtain in Section 12.2.

Finally, we complement our theoretical analysis by implementing and testing our steering algorithms in
several benchmark games in Section 12.7.

12.3 The Steering Problem
In this section, we introduce what we call the steering problem. Informally, the steering problem asks whether
a mediator can always steer players to any given equilibrium of an extensive-form game.

Definition 12.9 (Steering Problem for Pure-Strategy Nash Equilibrium). Let Γ be an extensive-form game
with payoffs bounded in [0, 1]. Let o be an arbitrary pure-strategy Nash equilibrium of Γ, which we will call
the target equilibrium. The mediator knows the game Γ, as well as a function R(T ) = o(T ), which may be
game-dependent, that bounds the regret of all players. At each round t ∈ [T ], the mediator picks payment
functions for each player, p

(t)
i : coX1 × · · · × coXn → [0, P ], where p

(t)
i is linear in xi and continuous in x−i,

and P defines the largest allowable per-iteration payment. Then, players pick strategies x
(t)
i ∈ Xi. Each

player i then gets utility v
(t)
i (xi) := ui(xi,x

(t)
−i) + p

(t)
i (xi,x

(t)
−i). The mediator has two desiderata.

(S1) (Payments) The time-averaged realized payments to the players, defined as

max
i∈[n]

1
T

T∑
t=1

p
(t)
i (x(t)),

converges to 0 as T →∞.

(S2) (Target Equilibrium) Players’ actions are indistinguishable from the Nash equilibrium o. That is, for
every terminal node z, the directness gap, defined as

∑
z∈Z

∣∣∣∣∣ 1
T

T∑
t=1

x̂(t)[z]− ô[z]
∣∣∣∣∣ =

∥∥∥∥∥ 1
T

T∑
t=1

x̂(t) − ô

∥∥∥∥∥
1

,

converges to 0 as T →∞.

The assumption imposed on the payment functions in Definition 12.9 ensures the existence of Nash equilibria
in the payment-augmented game (e.g., Fudenberg and Tirole, 1991, p. 34). Throughout this paper, we will
refer to players as direct if they are playing actions prescribed by the target equilibrium strategy o. Critically,
(S2) does not require that the strategies themselves converge to the direct strategies, i.e., x

(t)
i → oi, in

iterates or in averages. They may differ on nodes off the equilibrium path. Instead, the requirement defined
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by (S2) is that the outcome distribution over terminal nodes converges to that of the equilibrium. Similarly,
(S1) refers to the realized payments p

(t)
i (x(t)), not the maximum offered payment maxx∈X p

(t)
i (x).

For now, we assume that the pure Nash equilibrium is part of the instance, and therefore our only task is to
steer the agents toward it. In Section 12.6 we show how our steering algorithms can be extended to other
equilibrium concepts such as mixed or (Bayes-)correlated equilibria, and to the case where the mediator needs
to compute the equilibrium.

The mediator does not know anything about how the players pick their strategies, except that they will
have regret bounded by a function that vanishes in the limit and is known to the mediator. This condition
is a commonly adopted behavioral assumption (Nekipelov et al., 2015; Kolumbus and Nisan, 2022; Camara
et al., 2020). The regret of Player i ∈ [n] in this context is defined as

RegT
Xi

:= 1
P + 1

[
max
x∗

i
∈Xi

T∑
t=1

v
(t)
i (x∗

i )−
T∑

t=1
v

(t)
i (x(t)

i )
]

.

That is, regret takes into account the payment functions offered to that player. (The division by 1/(P + 1)
is for normalization, since v

(t)
i s has range [0, P + 1].)

How large payments are needed to achieve (S1) and (S2)? If the mediator could provide totally unconstrained
payments, it could enforce any arbitrary outcome. On the other hand, if the total payments are restricted to
be bounded, the steering problem is information-theoretically impossible:

Proposition 12.10. There exists a game and some function R(T ) = O(
√

T ) such that, for all B ≥ 0,
the steering problem is impossible if we add the constraint

∑∞
t=1
∑n

i=1 p
(t)
i (x(t)) ≤ B.

Hence, a weaker requirement on the size of the payments is needed. Between these extremes, one may allow
the total payment to be unbounded, but insist that the average payment per round must vanish in the limit.

12.4 Steering in Normal-Form Games
We start with the simpler setting of normal-form games, that is, extensive-form games in which every player
has one information set, and the set of histories correspond precisely to the set of pure profiles. This setting
is much simpler than the general extensive-form setting (we consider in the next section), and we can appeal
to a special case of a result in the literatureMonderer and Tennenholtz (2004).

Proposition 12.11 (Costless implementation of pure Nash equilibria, special case of k-implementation,
Monderer and Tennenholtz, 2004). Let o be a pure Nash equilibrium in a normal-form game. Then
there exist functions p∗

i : coX1 × · · · × coXn → [0, 1], with p∗
i (o) = 0, such that in the game with

utilities vi := ui + p∗
i , the profile o is weakly dominant: vi(oi,x−i) ≥ vi(xi,x−i) for every profile x.

The proof is constructive. The payment function

p∗
i (x) := (o⊤

i xi)
(

1−
∏
j ̸=i

o⊤
j xj

)
,

which on pure profiles x returns 1 if and only if xi = oi and xj ̸= oj for some j ̸= i makes equilibrium play
weakly dominant. It is almost enough for steering: the only problem is that o is only weakly dominant, so
no-regret players may play other strategies than o. This can be fixed by adding a small reward α≪ 1 for
playing oi. That is, we set

pi(x) := αo⊤
i xi + p∗

i (x) = (o⊤
i xi)

(
α + 1−

∏
j ̸=i

o⊤
j xj

)
. (14)
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On a high level, the structure of the payment function guarantees that the average strategy of any no-regret
learner i ∈ [n] should be approaching the direct strategy oi by making oi the strictly dominant strategy
of player i. At the same time, it is possible to ensure that the average payment will also be vanishing by
appropriately selecting parameter α. With an appropriate choice of α, this is enough to solve the steering
problem for normal-form games:

Theorem 12.12 (Normal-form steering). Let pi(x) be defined as in (14), set α =
√

ϵ, where ϵ :=
4nR(T )/T , and let T be large enough that α ≤ 1. Then players will be steered toward equilibrium,
with both payments and directness gap bounded by 2

√
ϵ.

We note that no effort was made throughout this paper to optimize the game-dependent or constant factors,
so long as they remained polynomial in |Z|—they can very likely be improved.

12.5 Steering in Extensive-Form Games
This section considers steering in extensive-form games. We will first consider a model in which steering
payments can condition on full player strategies (Section 12.5.1). Next, we consider a model in which only
realized trajectories are considered (Section 12.5.2).

Tbere are two main reassons why the extensive-form version of the steering problem is significantly more
challenging than the normal-form version.

First, in extensive form, the strategy spaces of the players are no longer simplices. Therefore, if we wanted to
write a payment function pi with the property that pi(x) = α1{x = o}+ 1{xi = oi;∃j xj ̸= oj} for pure x
(which is what was needed by Theorem 12.12), such a function would not be linear (or even convex) in player
i’s strategy xi ∈ coXi (which is a sequence-form strategy, not a distribution over pure strategies). As such,
even the meaning of extensive-form regret minimization becomes suspect in this setting.

Second, in extensive form, a desirable property would be that the mediator give payments conditioned only
on what actually happens in gameplay, not on the players’ full strategies—in particular, if a particular
information set is not reached during play, the mediator should not know what action the player would
have selected at that information set. We will call this the trajectory setting, and distinguish it from the
full-feedback setting, where the mediator observes the players’ full strategies.64 This distinction is meaningless
in the normal-form setting: since terminal nodes in normal form correspond to (pure) profiles, observing
gameplay is equivalent to observing strategies. (We will discuss this point in more detail when we introduce
the trajectory-feedback setting in Section 12.5.2.)

12.5.1 Steering with Full Feedback
In this section, we introduce a steering algorithm for extensive-form games under full feedback, summarized
below.

Definition 12.13 (FullFeedbackSteer). At every round, set the payment function pi(xi,x−i) as

αo⊤
i xi︸ ︷︷ ︸

directness bonus

+ [ui(xi,o−i)− ui(xi,x−i)]︸ ︷︷ ︸
sandboxing payments

− min
x′

i
∈Xi

[ui(x′
i,o−i)− ui(x′

i,x−i)],︸ ︷︷ ︸
payment to ensure nonnegativity

(15)

where α ≤ 1/|Z| is a hyperparameter that we will select appropriately.

By construction, pi satisfies the conditions of the steering problem (Definition 12.9): it is linear in xi,
continuous in x−i, nonnegative, and bounded by an absolute constant (namely, 3). The payment function
defined above has three terms:

64To be clear, the settings are differentiated by what the mediator observes, not what the players observe. That is, it is valid
to consider the full-feedback steering setting with players running bandit-feedback regret minimizers, or the trajectory-feedback
steering setting with players running full-feedback regret minimizing algorithms.
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1. The first term is a reward for directness: a player gets a reward proportional to α if it plays oi.

2. The second term compensates the player for the indirectness of other players. That is, the second term
ensures that players’ rewards are as if the other players had acted directly.

3. The final term simply ensures that the overall expression is nonnegative.

We claim that this protocol solves the basic version of the steering problem, as formalized below.

Theorem 12.14. Set α =
√

ϵ, where ϵ := 4nR(T )/T , and let T be large enough that α ≤ 1/|Z|. Then,
FullFeedbackSteer results in average realized payments and directness gap at most 3|Z|

√
ϵ.

12.5.2 Steering with Trajectory Feedback
In FullFeedbackSteer, payments depend on full strategies x, not the realized game trajectories. In
particular, the mediator in Theorem 12.14 observes what the players would have played even at infosets that
other players avoid. To allow for an algorithm that works without knowledge of full strategies, p

(t)
i must be

structured so that it could be induced by a payment function that only gives payments for terminal nodes
reached during play. To this end, we now formalize trajectory-feedback steering.

Definition 12.15 (Trajectory-feedback steering problem). Let Γ be an extensive-form game in which rewards
are bounded in [0, 1] for all players. Let o be an arbitrary pure-strategy Nash equilibrium of Γ. The mediator
knows Γ and a regret bound R(T ) = o(T ). At each t ∈ [T ], the mediator selects a payment function
q

(t)
i : Z → [0, P ]. The players select strategies x

(t)
i . A terminal node z(t) ∼ x(t) is sampled, and all agents

observe the terminal node that was reached, z(t). The players get payments q
(t)
i (z(t)), so that their expected

payment is p
(t)
i (x) := Ez∼x q

(t)
i (z). The desiderata are as in Definition 12.9.

The trajectory-feedback steering problem is more difficult than the full-feedback steering problem in two
ways. First, as discussed above, the mediator does not observe the strategies x, only a terminal node z(t) ∼ x.
Second, the form of the payment function q

(t)
i : Z → [0, P ] is restricted: this is already sufficient to rule out

FullFeedbackSteer. Indeed, pi as defined in (15) cannot be written in the form Ez∼x qi(z): pi(xi,x−i) is
nonlinear in x−i due to the nonnegativity-ensuring payments, whereas every function of the form Ez∼x qi(z)
will be linear in each player’s strategy.

We remark that, despite the above algorithm containing a sampling step, the payment function is defined
deterministically: the payment is defined as the expected value p

(t)
i (x) := Ez∼x q

(t)
i (z). Thus, the theorem

statements in this section will also be deterministic.

In the normal-form setting, the payments pi defined by (14) already satisfy the condition of trajectory-feedback
steering. In particular, if z is the terminal node, we have

pi(x) = E
z∼x

[α1{z = z∗}+ 1{xi = oi;∃j xj ̸= oj}].

Therefore, in the normal-form setting, Theorem 12.12 applies to both full-feedback steering and trajectory-
feedback steering, and we have no need to distinguish between the two. However, in extensive form, as
discussed above, the two settings are quite different.

126



C

1

1
2 ,0,0 0,0,0

2

0, 1
2 ,0 0,0,0

3

0,0, 1
2

0,0,0

C

1

0,0,0 2

0,0,0 3

0,0,0 1,1,1

2

0,0,0 3

0,0,0 1

0,0,0 1,1,1

3

0,0,0 1

0,0,0 2

0,0,0 1,1,1

j = 1

H S

j = 2

H S

j = 3

H S

j = ⊥

k = 1

H S

H S

H S

k = 2

H S

H S

H S

k = 3

H S

H S

H S

Figure 31: The counterexample for Theorem 12.16, for n = 3. Chance always plays
uniformly at random. Infosets are linked by dotted lines (all nodes belonging to the same
player are in the same infoset).

12.5.3 Lower Bound
Unlike in the full-feedback or normal-form settings, in the trajectory-feedback setting, steering is impossible
in the general case in the sense that per-iteration payments bounded by any constant do not suffice.

Theorem 12.16. For every P > 0, there exists an extensive-form game Γ with O(P ) players, O(P 2)
nodes, and rewards bounded in [0, 1] such that, with payments q

(t)
i : Z → [0, P ], it is impossible to steer

players to the welfare-maximizing Nash equilibrium, even when R(T ) = 0.

For intuition, consider the extensive-form game in Figure 31, which can be seen as a three-player version of
Stag Hunt. Players who play Hare (H) get a value of 1/2 (up to constants); in addition, if all three players
play Stag (S), they all get expected value 1. The welfare-maximizing equilibrium is “everyone plays Stag”, but
“everyone plays Hare” is also an equilibrium. In addition, if all players are playing Hare, the only way for the
mediator to convince a player to play Stag without accidentally also paying players in the Stag equilibrium
is to pay players at one of the three boxed nodes. But those three nodes are only reached with probability
1/n as often as the three nodes on the left, so the mediator would have to give a bonus of more than n/2.
The full proof essentially works by deriving an algorithm that the players could use to exploit this dilemma
to achieve either large payments or bad convergence rate, generalizing the example to n > 3, and taking
n = Θ(P ). The formal proof is deferred to the full paper (Zhang et al., 2024b).

12.5.4 Upper Bound
To circumvent the lower bound in Theorem 12.16, in this subsection, we allow the payment bound P ≥ 1 to
depend on both the time limit T and the game.

Definition 12.17 (TrajectorySteer). Let α, P be hyperparameters. Then, for all rounds t = 1, . . . , T ,
sample z ∼ x(t) and pay players as follows. If all players have been direct (i.e., if ô[z] = 1), pay all players
α. If at least one player has not been direct, pay P to all players who have been direct. That is, set
q

(t)
i (z(t)) = αô[z] + Poi[z](1− ô[z]).

Theorem 12.18. Set the hyperparameters α = 4|Z|1/2ϵ1/4 and P = 2|Z|1/2ϵ−1/4, where ϵ := R(T )/T ,
and let T be large enough that α ≤ 1. Then, running TrajectorySteer for T rounds results in
average realized payments bounded by 8|Z|1/2ϵ1/4, and directness gap by 2ϵ1/2.

As alluded to in the introduction, the proof of this result is more involved than those for previous results,
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because one cannot simply make the target equilibrium dominant as in the full-feedback case. One may hope
that—as in FullFeedbackSteer—the desired equilibrium can be made dominant by adding payments. In
fact, a sort of “chicken-and-egg” problem arises: (S2) requires that all players converge to equilibrium. But
for this to happen, other players’ strategies must first converge to equilibrium so that i’s incentives are as
they would be in equilibrium. The main challenge in the proof of Theorem 12.18 is therefore to carefully set
the hyperparameters to achieve convergence despite these apparent problems.

12.6 Other Equilibrium Notions and Online Steering
So far, Theorems 12.14 and 12.18 handle only the case where the equilibrium is a pure-strategy Nash
equilibrium of the game, given as part of the input. This section extends our analysis to other equilibrium
notions and considers settings in which an objective for the mediator is given instead of a target equilibrium.
For the former, we will show that many types of equilibrium can be viewed as pure-strategy equilibria in an
augmented game in which the mediator has the ability to give advice to the players in the form of action
recommendations. Then, in the original game, the goal is to guide the players to the pure strategy profile of
following recommendations.

12.6.1 Necessity of Advice
We first show that without the possibility to give advice, steering is impossible with sublinear payments.

Theorem 12.19. There exists a normal-form game, and objective function uM of the mediator, such
that the unique optimal equilibrium is mixed, and it is impossible to steer players toward that equilibrium
using only sublinear payments (and no advice).

Given this result, we will analyze a setting in with the mediator is allowed to provide “advice,” and show a
broad possibility result for steering.

12.6.2 More General Equilibrium Notions: Bayes-Correlated Equilibrium

Throughout this subsection, there will be two games: the original game Γ̂, and the augmented game Γ.
We will use hats to distinguish the various components of them. For example, a history of Γ̂ is ĥ ∈ Ĥ, a
strategy of Player i is x̂i ∈ X̂i, and so on. Given an n-player game Γ̂, the mediator-augmented game Γ is the
n + 1-player game constructed as follows. Γ is identical to Γ̂, except that there is an extra player, namely, the
mediator itself. We will denote the mediator as Player 0. For each (non-chance) player i, every decision point
ĥ ∈ Ĥi is replaced with the following gadget. First, the mediator selects an action â ∈ Â(ĥ) to recommend to
Player i. Player i privately observes the recommendation, and only then is allowed to choose an action. The
mediator is assumed to have perfect information in the game. To ensure that the size of Γ is not too large,
we make the following restriction: once two players have disobeyed action recommendations (“deviated”), the
mediator ceases to give further action recommendations. Finally, upon reaching a terminal node ẑ ∈ Ẑ, each
player gets utility ûi(ẑ).

We first analyze the size of Γ. A terminal node in Γ can be uniquely identified by a tuple (ẑ, ĥ1, ĥ2, â1, â2)
where ẑ is the terminal node in the original game that was reached, ĥ1, ĥ2 are predecessors of ẑ at which
players deviated (or ∅ if the deviations did not happen), and â1 and â2 are the recommendations that the
mediator gave at ĥ1, ĥ2 respectively (again, ∅ if the deviations did not happen). Thus, a (very loose) bound
on the number of terminal nodes in Γ is |Z| ≤ |Ẑ|3, i.e., it is polynomial. (This is where we use the fact that
only two deviations were allowed.)

As in the previous section, the mediator is able to commit to a strategy µ ∈ coXM upfront on each iteration.
For a fixed mediator strategy µ, we will use Γµ to refer to the n-player game resulting from treating the
mediator as a nature player that plays according to µ.

The direct strategy oi ∈ Xi of each player i is the strategy that follows all mediator recommendations. The
goal of the mediator is to find a Bayes-correlated equilibrium, which is defined as follows.
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Definition 12.20. A Bayes-correlated equilibrium Γ is a strategy µ ∈ coXM for the mediator such that o is
a Nash equilibrium of Γµ. An equilibrium µ is optimal if, among all equilibria, it maximizes the mediator’s
objective uM(µ,o).

Bayes-correlated equilibria (BCEs) were introduced first by Bergemann and Morris (2016) in single-step games.
In sequential (extensive-form) games, BCEs were explored first, to our knowledge, by Makris and Renou
(2023) in the economics literature, and in independent work in the computer science literature as a special case
of the general framework introduced by Zhang and Sandholm (2022a). Bayes-correlated equilibria are easily
seen to be a superset of most other equilibrium notions, including (mixed) Nash equilibria, extensive-form
correlated equilibria (EFCE) (von Stengel and Forges, 2008), communication equilibria (Forges, 1986; Myerson,
1986), and many more. The revelation principle assures us that the assumption that players will be direct in
equilibrium is without loss of generality: for every possible Nash equilibrium x of Γµ, then there is some µ′

such that ui(µ′,o) = ui(µ,x).

BCEs naturally capture the problems of information design and Bayesian persuasion (e.g., Kamenica and
Gentzkow (2011)). In particular, the results in this section can therefore be thought of as a version of
information design/Bayesian persuasion that does not need to assume that players will play a certain profile
(o), but instead steers the players to play that profile.

Since Γµ is just an n-player game with pure Nash equilibrium o, all of the results in the previous sections
apply. Therefore, it follows immediately that is possible to steer players toward any BCE (and thus any
mixed Nash equilibrium, any EFCE, or any communication equilibrium) so long as the mediator is allowed to
give advice to the players. We therefore have the following result.

Theorem 12.21. Algorithms FullFeedbackSteer and TrajectorySteer can be used to steer
players to an arbitrary Bayes-correlated equilibrium, with (up to a polynomial loss in the dependence
on |Ẑ|, because |Z| = poly(|Ẑ|)) the same bounds.

12.6.3 Online Steering
We now consider the setting where the target equilibrium is not given to us beforehand. We assume that the
mediator wishes to steer players toward an optimal equilibrium, but does not a priori know what that optimal
equilibrium is. Instead of a target Nash equilibrium, we assume that the mediator has a utility function
ûM : Ẑ → [0, 1], and we will call ûM the objective. As with players’ utility functions, ûM in Γ̂ induces a
mediator utility function uM in Γ. In particular, we would like to steer players toward an optimal equilibrium
µ, without knowing that equilibrium beforehand. To that end, we add a new criterion.

(S3) (Optimality) The mediator’s reward should converge to the reward of the optimal equilibrium. That
is, the optimality gap u∗

M − 1
T

∑T
t=1 uM(µ(t),x(t)), where u∗

M is the mediator utility in an optimal
equilibrium, converges to 0 as T →∞.

Since equilibria in mediator-augmented games are just strategies µ̃ under which õ is a Nash equilibrium, we
may use the following algorithm to steer players toward an optimal Bayes-correlated equilibrium:

Definition 12.22 (ComputeThenSteer). Compute an optimal equilibrium µ. With µ held fixed, run any
steering algorithm in Γµ.

As observed earlier, the main weakness of ComputeThenSteer is that it must compute an equilibrium
offline. Although this can be done in polynomial time (Zhang and Sandholm, 2022a), it is still far less efficient
than, for example, a single step of a regret minimier. To sidestep this, in this section we will introduce
algorithms that compute the equilibrium in an online manner, while steering players toward it. Our algorithms
will make use of a Lagrangian dual formulation analyzed by Zhang et al. (2023a).
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Proposition 12.23 (Zhang et al. (2023a)). There exists a (game-dependent) constant λ∗ ≥ 0 such
that, for every λ ≥ λ∗, the solutions µ to

max
µ∈co XM

min
xi∈co Xi:i∈[n]

uM(µ,o)− λ

n∑
i=1

[ui(µ,xi,o−i)− ui(µ,oi,o−i)], (16)

are exactly the optimal equilibria of the augmented game.

Definition 12.24 (OnlineSteer). The mediator runs a regret minimization algorithm RM over its own
strategy space XM, which we assume has regret at most RM(T ) after T rounds. On each round, the mediator
does the following:

• Get a strategy µ(t) from RM. Play µ(t), and set p
(t)
i as defined in (15) in Γµ(t) .

• Pass utility µ 7→ 1
λ uM(µ,o)−

∑n
i=1

[
ui(µ,x

(t)
i ,o−i)− ui(µ,oi,o−i)

]
to RM, where λ ≥ 1 is a hyper-

parameter.

Theorem 12.25. Set the hyperparameters α = ϵ2/3|Z|−1/3 and λ = |Z|2/3ϵ−1/3, where ϵ := (RM(T ) +
4nR(T ))/T is the average regret bound summed across players, and let T be large enough that α ≤ 1/|Z|.
Then running OnlineSteer results in average realized payments, directness gap, and optimality gap
all bounded by 7λ∗|Z|4/3ϵ1/3.

The argument now works with the zero-sum formulation (16), and leverages the fact that the agents’ average
strategies are approaching the set of Nash equilibria since they have vanishing regrets. Thus, each player’s
average strategy should be approaching the direct strategy, which in turn implies that the average utility
of the mediator is converging to the optimal value, analogously to Theorem 12.14. We provide the formal
argumentin the full paper (Zhang et al., 2024b)

It is worth noting that, despite the fact that it would speed up the convergence, we cannot set λ and α
dependent on λ∗, because we do not know λ∗ a priori.

Algorithm OnlineSteer can also be used to steer to optimal equilibria in other notions of equilibrium,
such as communication equilibrium (Forges, 1986; Myerson, 1986), by using appropriate constructions of
mediator-augmented games. The Bayes-correlated equilibrium is the most natural and general of these
notions, so it is the one we use in our paper. For a more general discussion of mediator-augmented games,
see Zhang and Sandholm (2022a).

OnlineSteer has a further guarantee that FullFeedbackSteer does not, owing to the fact that it learns
an equilibrium online: it works even when the players’ sets of deviations, Xi, is not known upfront. In
particular, the following generalization of Theorem 12.25 follows from an identical proof.

Corollary 12.26. Suppose that each player i, unbeknownst to the mediator, is choosing from a subset
Yi ⊆ Xi of strategies that includes the direct strategy oi. Then, running Theorem 12.25 with the same
hyperparameters yields the same convergence guarantees, except that the mediator’s utility converges
to its optimal utility against the true deviators, that is, a solution to (16) with each Xi replaced by Yi.

At this point, it is very reasonable to ask whether it is possible to perform online steering with trajectory
feedback. In normal-form games, as with offline setting, there is minimal difference between the trajectory-
and full-feedback settings. This intuition carries over to the trajectory-feedback setting: OnlineSteer
can be adapted into an online trajectory-feedback steering algorithm for normal-form games, with essentially
the same convergence guarantee. We defer the formal statement of the algorithm and proof to the appendix
of the full paper (Zhang et al., 2024b).

The algorithm, however, fails to extend to the extensive-form online trajectory-feedback setting, for the same
reasons that the offline full-feedback algorithm fails to extend to the online setting. We leave extensive-form
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online trajectory-feedback steering as an interesting open problem.

12.7 Experimental Results
We ran experiments with our TrajectorySteer algorithm (Definition 12.17) on various notions of equilib-
rium in extensive-form games, using the ComputeThenSteer framework suggested by Definition 12.22.
Since the hyperparameter settings suggested by Definition 12.17 are very extreme, in practice we fix a constant
P and set α dynamically based on the currently-observed gap to directness. We used CFR+ (Tammelin,
2014) as the regret minimizer for each player, and precomputed a welfare-optimal equilibrium with the LP
algorithm of Zhang and Sandholm (2022a). In most instances tested, a small constant P (say, P ≤ 8) is
enough to steer CFR+ regret minimizers to the exact equilibrium in a finite number of iterations. Two
plots exhibiting this behavior are shown in Figure 32. More experiments, as well as descriptions of the game
instances tested, can be found in the appendix of the full paper (Zhang et al., 2024b).
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1Figure 32: Sample experimental results. The blue line in each figure is the social welfare
(left y-axis) of the players with steering enabled. The green dashed line is the social welfare
without steering. The yellow line gives the payment (right y-axis) paid to each player. The
flat black line denotes the welfare of the optimal equilibrium. The panels show the game, the
equilibrium concept (in this figure, always EFCE). In all cases, the first ten iterations are a
“burn-in” period during which no payments are issued; steering only begins after that.

12.8 Conclusions and Future Research
We established that it is possible to steer no-regret learners to optimal equilibria using vanishing rewards,
even under trajectory feedback. There are many interesting avenues for future research. First, is there a
natural trajectory-feedback, online algorithm that combines the desirable properties of both OnlineSteer and
TrajectorySteer? Second, this paper did not attempt to provide optimal rates, and their improvement is a
fruitful direction for future work. Third, are there algorithms with less demanding knowledge assumptions for
the principal, e.g., steering without knowledge of utility functions? Finally, our main behavioral assumption
throughout this paper is that the regret players incur vanishes in the limit. Yet, stronger guarantees could be
possible when specific no-regret learning dynamics are in place, such as mean-based learning (Braverman
et al., 2018); see (Vlatakis-Gkaragkounis et al., 2020; Giannou et al., 2021a,b) for recent results in the presence
of strict equilibria. Concretely, it would be interesting to understand the class of learning dynamics under
which the steering problem can be solved with a finite cumulative budget.
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Part IV

Subgame Solving in Large Games
13 Subgame Solving without Common Knowledge

13.1 Introduction
Subgame solving is the standard technique for playing perfect-information games that has been used by strong
agents in a wide variety of games, including chess (Campbell et al., 2002; Stockfish) and go (Silver et al., 2016).
Methods for subgame solving in perfect-information games exploit the fact that a solution to a subgame can
be computed independently of the rest of the game. However, this condition fails in the imperfect-information
setting, where the optimal strategy in a subgame can depend on strategies outside that subgame.

Recently, subgame solving techniques have been extended to imperfect-information games (Ganzfried and
Sandholm, 2015a; Jackson, 2014). Some of those techniques are provably safe in the sense that, under
reasonable conditions, incorporating them into an agent cannot make the agent more exploitable (Burch
et al., 2014; Moravcik et al., 2016; Brown and Sandholm, 2017; Moravč́ık et al., 2017; Brown et al., 2018;
Šustr et al., 2019; Brown et al., 2020; Kovař́ık et al., 2021). These techniques formed the core ingredient
toward recent superhuman breakthroughs in AIs for no-limit Texas hold’em poker (Brown and Sandholm,
2018, 2019b). However, all of the prior techniques have a shared weakness that limits their applicability: as
a first step, they enumerate the entire common-knowledge closure of the player’s current infoset, which is
the smallest set of states within which it is common knowledge that the current node lies. In two-player
community-card poker (in which each player is dealt private hole cards, and all actions are public, e.g., Texas
hold’em), for example, the common-knowledge closure contains one node for each assignment of hole cards to
both players. This set has a manageable size in such poker games, but in other games, it is unmanageably
large.

We introduce a different technique to avoid having to enumerate the entire common-knowledge closure. We
enumerate only the set of nodes corresponding to kth-order knowledge for finite k—in the present work,
we focus mostly on the case k = 1, for it already gives us interesting results. This allows an agent to only
conduct subgame solving on still-reachable states, which in general is a much smaller set than the whole
common-knowledge subgame.

We prove that, as is, the resulting algorithm, 1-KLSS, does not guarantee safety, but we develop three
avenues by which safety can be guaranteed. First, safety is guaranteed if the results of subgame solves are
incorporated back into the blueprint strategy. Second, we provide a method by which safety is achieved by
limiting the infosets at which subgame solving is performed. Third, we prove that our approach, when applied
at every infoset reached during play, achieves a weaker notion of equilibrium, which we coin affine equilibrium
and which may be of independent interest. We show that affine equilibria cannot be exploited by any Nash
strategy of the opponent: an opponent who wishes to exploit an affine equilibrium must open herself to
counter-exploitation. Even without these three safety-guaranteeing additions, experiments on medium-sized
games show that 1-KLSS always reduced exploitability in practical games even when applied at every infoset.

We use depth-limited 1-KLSS to create, to our knowledge, the first agent capable of playing dark chess, a
large imperfect-information variant of chess with similar game tree size, at a high level. We test it against
opponents of various levels, including a baseline agent, an amateur-level human, and the world’s highest-rated
player. Our agent defeated the former two handily, and, despite losing to the top human, exhibited strong
performance in the opening and midgame, often gaining a significant advantage before losing it in the
endgame.
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13.2 Preliminaries
In this section, we consider timeable two-player zero-sum games of imperfect recall with explicitly-defined
observations. That is, each player has a function oi : H → R defining the observation that player i makes at
history h. The sequence si(h) consists of all observations made by the player at nodes up to and including h.
The set of sequences of player i is Σi.

We say that two states h = ∅a1 . . . at and h′ = ∅b1 . . . bt are indistinguishable to player i, denoted h ∼i h′,
if si(h) = si(h′). An equivalence class of nodes h ∈ H under ∼i is an infoset. Notice that infosets are
well-defined here even for the player not moving—this will be critical later on.

If u, u′ are nodes or sequences, u ⪯ u′ means u is an ancestor of u′ (or u′ = u). If S is a set of nodes, h ⪰ S
means h ⪰ h′ for some h′ ∈ S, and S = {z : z ⪰ S}.

A sequence-form mixed strategy (hereafter strategy) of player i is a vector x ∈ RΣi , in which x[s] denotes the
probability that player i plays all the actions in the sequence s. If h is a node or infoset, then we will use the
overloaded notation x[h] := x[si(h)].

The counterfactual best-response value (hereafter best-response value) u∗(x|Ia) to a ▲-strategy x ∈ coX
upon playing action a at I is the normalized best value for ▼ against x after playing a at I: u∗(x|Ia) =

1∑
h∈I

p(h)x[h]
miny∈Y:y[Ia]=1

∑
z:s▼(z)⪰Ia u(z)p(z)x[z]y[z]. The best-response value at an infoset I is defined

as u∗(x|I) = maxa u∗(x|Ia). The best-response value u∗(x) (without specifying an infoset) is the best-response
value at the root, i.e., miny∈co Y u(x,y). Analogous definitions hold for ▼-strategy y and ▲-infoset I.

We say that two nodes h and h′ are transpositions if an observer who begins observing the game at h or h′

and sees both players’ actions and observations at every timestep cannot distinguish between the two nodes.
Formally, h, h′ are transpositions if, for all action sequences a1 . . . at:

1. ha1 . . . at is valid (i.e., for all j, aj is a legal move in ha1 . . . aj−1) if and only if h′a1 . . . at is valid, and
in this case, we have oi(ha1 . . . aj) = oi(h′a1 . . . aj) for all players i and times 0 ≤ j ≤ t, and

2. ha1 . . . at is terminal if and only if h′a1 . . . at is terminal, and in this case, we have u(ha1 . . . at) =
u(h′a1 . . . at).

For example, ignoring draw rules, two chess positions are transpositions if they have equal piece locations,
castling rights, and en passant rights.

13.3 Common-Knowledge Subgame Solving
In this section we discuss prior work on subgame solving. First, ▲ computes a blueprint strategy x for the
full game. During a playthrough, ▲ reaches an infoset I, and would like to perform subgame solving to
refine her strategy for the remainder of the game. All prior subgame solving methods that we are aware of
require, as a first step, constructing (Burch et al., 2014; Moravcik et al., 2016; Brown and Sandholm, 2017;
Moravč́ık et al., 2017; Brown et al., 2018; Šustr et al., 2019; Brown et al., 2020; Kovař́ık et al., 2021), or at
least approximating via samples (Šustr et al., 2021), the common-knowledge closure of I.

Definition 13.1. The infoset hypergraph G of a game Γ is the hypergraph whose vertices are the nodes of Γ,
and whose hyperedges are information sets.

Definition 13.2. Let S be a set of nodes in Γ. The order-k knowledge set Sk is the set of nodes that are at
most distance k − 1 away from S in G. The common-knowledge closure S∞ is the connected component of G
containing S.

Intuitively, if we know that the true node is in S, then we know that the opponent knows that the true
node is in S2, we know that the opponent knows that we know that the true node is in S3, etc., and it is
common knowledge that the true node is in S∞. After constructing I∞ (where I, as above, is the infoset
▲ has reached), standard techniques then construct the subgame I∞ (or an abstraction of it), and solve
it to obtain the refined strategy. In this section we describe three variants: resolving (Burch et al., 2014),
maxmargin (Moravcik et al., 2016), and reach subgame solving (Brown and Sandholm, 2017).

133



Let Htop be the set of root nodes of I∞, that is, the set of nodes h ∈ I∞ for which the parent of h is not in I∞.
In subgame resolving, the following gadget game is constructed. First, nature chooses a node h ∈ Htop with
probability proportional to p(h)x[h]. Then, ▼ observes her infoset I▼(h), and is given the choice to either exit
or play. If she exits, the game ends at a terminal node z with u(z) = u∗(x|I▼(h)). This payoff is called the
alternate payoff at I▼(h). Otherwise, the game continues from node h. In maxmargin solving, the objective
is changed to instead find a strategy x′ that maximizes the minimum margin M(I) := u∗(x′|I) − u∗(x|I)
associated with any ▼-infoset I intersecting Htop. (Resolving only ensures that all margins are positive). This
can be accomplished by modifying the gadget game. In reach subgame solving, the alternative payoffs u∗(x|I)
are decreased by the gift at I, which is a lower bound on the magnitude of error that ▼ has made by playing
to reach I in the first place. Reach subgame solving can be applied on top of either resolving or maxmargin.

The full game Γ is then replaced by the gadget game, and the gadget game is resolved to produce a strategy
x′ that ▲ will use to play to play after I. To use nested subgame solving, the process repeats when another
new infoset is reached.

13.4 Knowledge-Limited Subgame Solving
In this section we introduce the main contribution of our paper, knowledge-limited subgame solving. The core
idea is to reduce the computational requirements of safe subgame solving methods by discarding nodes that
are “far away” (in the infoset hypergraph G) from the current infoset.

Fix an odd positive integer k. In order-k knowledge-limited subgame solving (k-KLSS), we fix ▲’s strategy
outside Ik, and then perform subgame solving as usual. Pseudocode for all algorithms can be found in the
appendix. This carries many advantages:

1. Since ▲’s strategy is fixed outside Ik, ▼’s best response outside Ik+1 is also fixed. Thus, all nodes
outside Ik+1 can be pruned and discarded.

2. At nodes h ∈ Ik+1 \ Ik, ▲’s strategy is again fixed. Thus, the payoff at these nodes is only a function
of ▼’s strategy in the subgame and the blueprint strategy. These payoffs can be computed from the
blueprint and added to the row of the payoff matrix corresponding to ▲’s empty sequence. These nodes
can then also be discarded, leaving only Ik.

3. Transpositions can be accounted for if k = 1 and we allow a slight amount of incorrectness. Suppose
that h, h′ ∈ I are transpositions. Then ▲ cannot distinguish h from h′ ever again. Further, ▼’s
information structure after h in Ik is identical to her information structure in h′ in Ik. Thus, in the
payoff matrix of the subgame, h and h′ induce two disjoint sections of the payoff matrix Ah and Ah′

that are identical except for the top row (thanks to Item 2 above). We can thus remove one (say, at
random) without losing too much. If one section of the matrix contains entries that are all not larger
than the corresponding entries of the other part, then we can remove the latter part without any loss
since it is weakly dominated.

The transposition merging may cause incorrect behavior (over-optimism) in games such as poker, but we
believe that its effect in a game like dark chess, where information is transient at best and the evaluation of a
position depends more on the actual position than on the players’ information, is minor. Other abstraction
techniques can also be used to reduce the size of the subgame, if necessary. We will denote the resulting
gadget game Γ[Ik].

In games like dark chess, even individual infosets can have size 107, which means even I2 can have size 1014

or larger. This is wholly unmanageable in real time. Further, very long shortest paths can exist in the infoset
hypergraph G. As such, it may be difficult to even determine whether a given node is in I∞, much less
expand all its nodes, even approximately. Thus, being able to reduce to Ik for finite k is a large step in
making subgame solving techniques practical.

The benefit of KLSS can be seen concretely in the following parameterized family of games which we coin
N -matching pennies. We will use it as a running example in the rest of the paper. Nature first chooses an
integer n ∈ {1, . . . , N} uniformly at random. ▲ observes ⌊n/2⌋ and ▼ observes ⌊(n + 1)/2⌋. Then, ▲ and
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▼ simultaneously choose heads or tails. If they both choose heads, ▲ scores n. If they both choose tails,
▲ scores N − n. If they choose opposite sides, ▲ scores 0. For any infoset I just after nature makes her
move, there is no common knowledge whatsoever, so I∞ is the whole game except for the root nature node.
However, Ik consists of only Θ(k) nodes.

On the other hand, in community-card poker, I∞ itself is quite small: indeed, in heads-up Texas Hold’Em, I∞

always has size at most
(52

2
)
·
(50

2
)
≈ 1.6× 106 and even fewer after public cards have been dealt. Furthermore,

game-specific tricks or matrix sparsification (Johanson et al., 2011; Zhang and Sandholm, 2020b) can make
game solvers behave as if I∞ ≈ 103. This is manageable in real time, and is the key that has enabled recent
breakthroughs in AIs for no-limit Texas hold’em (Moravč́ık et al., 2017; Brown and Sandholm, 2018, 2019b).
In such settings, we do not expect our techniques to give improvement over the current state of the art.

The rest of this section addresses the safety of KLSS. The techniques in Section 13.3 are safe in the sense
that applying them at every infoset reached during play in a nested fashion cannot increase exploitability
compared to the blueprint strategy (Burch et al., 2014; Moravcik et al., 2016; Brown and Sandholm, 2017).
KLSS is not safe in that sense:

Proposition 13.3. There exists a game and blueprint for which applying 1-KLSS at every infoset
reached during play increases exploitability by a factor linear in the size of the game.

Despite the above negative example, we now give multiple methods by which we can obtain safety guarantees
when using KLSS.

13.4.1 Safety by Updating the Blueprint
Our first method of obtaining safety is to immediately and permanently update the blueprint strategy after
every subgame solution is computed. Proofs of the results in this section can be found in the appendix.

Theorem 13.4. Suppose that whenever k-KLSS is performed at infoset I (e.g., it can be performed at
every infoset reached during play in a nested manner), and that subgame strategy is immediately and
permanently incorporated into the blueprint, thereby overriding the blueprint strategy in Ik. Then the
resulting sequence of blueprints has non-increasing exploitability.

To recover a full safety guarantee from Theorem 13.4, the blueprint—not the subgame solution—should be
used during play, and the only function of the subgame solve is to update the blueprint for later use. One
way to track the blueprint updates is to store the computed solutions to all subgames that the agent has ever
solved. In games where only a reasonably small number of paths get played in practice (this can depend on
the strength and style of the players), this is feasible. In other games this might be prohibitively storage
intensive.

It may seem unintuitive that we cannot use the subgame solution on the playthrough on which it is computed,
but we can use it forever after that (by incorporating it into the blueprint), while maintaining safety. This is
because, if we allow the choice of information set I in Theorem 13.4 to depend on the opponent’s strategy,
the resulting strategy is exploitable due to Proposition 13.3. By only using the subgame solve result at later
playthroughs, the choice of I no longer depends on the opponent strategy at the later playthrough, so we
recover a safety guarantee.

One might further be concerned that what the opponent or nature does in some playthrough of the game
affects our strategy in later playthroughs and thus the opponent can learn more about, or affect, the strategy
she will face in later playthroughs. However, this is not a problem. If the blueprint is an ϵ-NE, the opponent
(or nature) can affect which ϵ-NE we will play at later playthroughs, but because we will always play from
some ϵ-NE, we remain unexploitable.

In the rest of this section we prove forms of safety guarantees for 1-KLSS that do not require the blueprint to
be updated at all.
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13.4.2 Safety by Allocating Deviations from the Blueprint
We now show that another way to achieve safety of 1-KLSS is to carefully allocate how much it is allowed to
deviate from the blueprint. Let G′ be the graph whose nodes are infosets for ▲, and in which two infosets I
and I ′ share an edge if they contain nodes that are in the same ▼-infoset. In other words, G′ is the infoset
hypergraph G, but with every ▲-infoset collapsed into a single node.

Theorem 13.5. Let x be an ϵ-NE blueprint strategy for ▲. Let I be an independent set in G′ that is
closed under ancestor (that is, if I ⪰ I ′ and I ∈ I, then I ′ ∈ I). Suppose that 1-KLSS is performed at
every infoset in I, to create a strategy x′. Then x′ is also an ϵ-NE strategy.

To apply this method safely, we may select beforehand a distribution π over independent sets of G′, which
induces a map p : V (G′)→ R where p(I) = PrI∼π[I ∈ I]. Then, upon reaching infoset I, with probability
1 − p(I), play the blueprint until the end of the game; otherwise, run 1-KLSS at I (possibly resulting in
more nested subgame solves) and play that strategy instead. It is always safe to set p(I) ≤ 1/χ(I∞) where
χ(I∞) denotes the chromatic number of the subgraph of G′ induced by the infosets in the common-knowledge
closure I∞. For example, if the game is perfect information, then G′[I∞] is the trivial graph with only one
node I, so, as expected, it is safe to set p(I) = 1, that is, perform subgame solving everywhere.

13.4.3 Affine Equilibrium, which Guarantees Safety against All Equilibrium
Strategies

We now introduce the notion of affine equilibrium. We will show that such equilibrium strategies are safe
against all NE strategies, which implies that they are only exploitable by playing non-NE strategies, that is,
by opening oneself up to counter-exploitation. We then show that 1-KLSS finds such equilibria.

Definition 13.6. A vector x is an affine combination of vectors x1, . . . , xk if x =
∑k

i=1 αixi with
∑

i αi = 1,
where the coefficients αi can have arbitrary magnitude and sign.

Definition 13.7. An affine equilibrium strategy is an affine combination of NE strategies.

In particular, if the NE is unique, then so is the affine equilibrium. Before stating our safety guarantees, we
first state another fact about affine equilibria that illuminates their utility.

Proposition 13.8. Every affine equilibrium is a best response to every NE strategy of the opponent.

In other words, every affine equilibrium is an NE of the restricted game Γ′ in which ▼ can only play her NE
strategies in Γ. That is, affine equilibria are not exploitable by NE strategies of the opponent, not even by
safe exploitation techniques (Ganzfried and Sandholm, 2015b). So, the only way for the opponent to exploit
an affine equilibrium is to open herself up to counter-exploitation. Affine equilibria may be of independent
interest as a reasonable relaxation of NE in settings where finding an exact or approximate NE strategy may
be too much to ask for.

Theorem 13.9. Let x be a blueprint strategy for ▲, and suppose that x happens to be an NE strategy.
Suppose that we run 1-KLSS using the blueprint x, at every infoset in the game, to create a strategy
x′. Then x′ is an affine equilibrium strategy.

The theorem could perhaps be generalized to approximate equilibria, but the loss of a large factor (linear in
the size of the game, in the worst case) in the approximation would be unavoidable: the counterexample in
the proof of Proposition 13.3 has a Θ(1/N)-NE becoming a Θ(1)-NE, in a game where the Nash equilibria
are already affine-closed (that is, all affine combinations of Nash equilibria are Nash equilibria). Furthermore,
it is nontrivial to even define ϵ-affine equilibrium.

Theorem 13.9 and Proposition 13.3 together suggest that 1-KLSS may make mistakes when x suffers from
systematic errors (e.g., playing a certain action a too frequently overall rather than in a particular infoset).
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Figure 33: A simple game that we use in our example. The game is a modified version
of 4-matching pennies. Blank nodes are nature or terminal; terminal nodes are labeled with
their utilities. Nodes will be referred to by the sequence of edges leading to that node; for
example, the leftmost terminal node is 1hh. The details of the subgame at e are irrelevant.
Nature’s strategy at the root node is uniform random.
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Figure 34: The common-knowledge subgame at A1, Γ[A∞
1 ]. Nature’s strategy at all its

nodes, once again, is uniform random. The nodes c′
0 and c′

4 are redundant because nature
only has one action, but we include these for consistency with the pseudocode.

1-KLSS may overcorrect for such errors, as the counterexample clearly shows. Intuitively, if the blueprint
plays action a too often (e.g., folds in poker), 1-KLSS may try to correct for that game-wide error fully in each
infoset, thereby causing the strategy to overall be very far from equilibrium (e.g., folding way too infrequently
in poker). However, we will demonstrate that this overcorrection never happens in our experiments in
practical games, even if the blueprint contains very systematic errors.

Strangely, the proofs of both Theorem 13.9 and Theorem 13.5 do not work for k-KLSS when k > 1, because
it is no longer the case that the strategies computed by subgame solving are necessarily played—in particular,
for k > 1, k-KLSS on an infoset I computes strategies for infosets I ′ that are no longer reachable, and such
strategies may never be played. For k =∞—that is, for the case of common knowledge—it is well known
that the theorems hold via different proofs (Burch et al., 2014; Moravcik et al., 2016; Brown and Sandholm,
2017). We leave the investigation of the case 1 < k <∞ for future research.
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13.5 Example of How 1-KLSS Works
Figure 33 shows a small example game. Suppose that the ▲-blueprint is uniform random, and consider an
agent who has reached infoset A1 and wishes to perform subgame solving. Under the given blueprint strategy,
▼ has the following counterfactual values: 1/2 at B′

0 and C ′
4, and 5/2 at B′

2.

The common-knowledge maxmargin gadget subgame Γ[A∞
1 ] can be seen in Figure 34. The 1-KLSS maxmargin

gadget subgame Γ[A1] can be seen in Figure 35.

The advantage of 1-KLSS is clearly demonstrated in this example: while both KLSS and common-knowledge
subgame solving prune out the subgame at node 5, 1-KLSS further prunes the subgames at node 4 (because
it is outside the order-2 set A2

1 and thus does not directly affect A1) and node 3 (because it only depends on
▼’s strategy in the subgame—and not on ▲’s strategy—and thus can be added to a single row of B).

The payoff matrices corresponding to these gadget subgames can be found in the appendix of the full
paper (Zhang and Sandholm, 2021b).

13.6 Dark Chess: An Agent from Only a Value Function Rather
Than a Blueprint

In this section, we give an overview of our dark chess agent, which uses 1-KLSS as a core ingredient. More
details can be found in the appendix of the full paper (Zhang and Sandholm, 2021b). Although we wrote our
agent in a game-specific fashion, many techniques in this section also apply to other games.

Definition 13.10. A trunk of a game Γ is a modified version of Γ in which some internal nodes h of Γ have
been replaced by terminal nodes and given utilities. We will call such nodes internal leaves. When working
with a trunk, internal leaves h can be expanded by adding all of their children into the tree, giving these
children utilities, and removing the utility assigned to h.

In dark chess, constructing a blueprint is already a difficult problem due to the sheer size of the game, and
expanding the whole game tree is clearly impractical. Instead, we resort to a depth-limited version of 1-KLSS.
In depth-limited subgame solving, only a trunk of the game tree is expanded explicitly, and approximations
are made to the leaves of the trunk.

Conventionally in depth-limited subgame solving of imperfect-information games, at each trunk leaf, both
players are allowed to choose among continuation strategies for the remainder of the game (Brown et al.,
2018, 2020; Kovař́ık et al., 2021; Šustr et al., 2021). In the absence of a mechanism for creating a reasonable
blueprint, much less multiple blueprints to be used as continuation strategies, we resort to only using an
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approximate value function ũ : H → R. We will not formally define what a good value function is, except
that it should roughly approximate “the value” of a node h ∈ H, to the extent that such a quantity exists
(for a more rigorous treatment of value functions in subgame solving, see Kovař́ık et al., 2021 (Kovař́ık et al.,
2021)). In this setting, this is not too bothersome: the dominant term in any reasonable node-value function
in dark chess will be material count, which is common knowledge anyway. We use a value function based on
Stockfish 13, currently the strongest available chess engine.

Subgame solving in imperfect-information games with only approximate leaf values (and no continuation
strategies) has not been explored to our knowledge (since it is not theoretically sound), but it seems reasonable
to assume that it would work well with sufficient depth, since increasing depth effectively amounts to adding
more and more continuation strategies.

To perform nested subgame solving, every time it is our turn, we perform 1-KLSS at our current information
set. The generated subgame then replaces the original game, and the process repeats. This approach has
the notable problem of information loss over time: since all the solves are depth-limited, eventually, we will
reach a point where we fall off the end of the initially-created game tree. At this point, those nodes will
disappear from consideration. From a game-theoretic perspective, this equates to always assuming that the
opponent knew the exact state of the game d timesteps ago, where d is the search depth. As a remedy, one
may consider sampling some number of infosets I ′ ⪰ I2 \ I to continue expanding. We do not investigate this
possibility here, as we believe that it would not yield a significant performance benefit in dark chess (and
may even hurt in practice: since no blueprint is available at I ′, a new blueprint would have to be computed.
This effectively amounts to 3-KLSS, which may lack theoretical guarantees compared to 1-KLSS).

13.7 Experiments
Experiments in medium-sized games. We conducted experiments on various small and medium-sized
games to test the practical performance of 1-KLSS. To do this, we created a blueprint strategy for ▲ that is
intentionally weak by forcing ▲ to play an ϵ-uniform strategy (i.e., at every infoset I, every action a must be
played with probability at least ϵ/m where m is the number of actions at I). The blueprint is computed as
the least-exploitable strategy under this condition. During subgame solving, the same restriction is applied
at every infoset except the root, which means theoretically that it is possible for any strategy to arise from
nested solving applied to every infoset in the game. The mistakes made by playing with this restriction are
highly systematic (namely, playing bad actions with positive probability ϵ); thus, the argument at the end of
Section 13.4 suggests that we may expect order-1 subgame solving to perform poorly in this setting.

We tested on a wide variety of games, including some implemented in the open-source library OpenSpiel (Lanc-
tot et al., 2019). All games were solved with Gurobi 9.0 (Gurobi Optimization, LLC, 2020), and subgames
were solved in a nested fashion at every information set using maxmargin solving. We found that, in all
practical games (i.e., all games tested except the toy game 100-matching pennies) 1-KLSS in practice always
decreases the exploitability of the blueprint, suggesting that 1-KLSS decreases exploitability in practice,
despite the lack of matching theoretical guarantees. Experimental results can be found in Table 36. We also
conducted experiments at ϵ = 0 (so that the blueprint is an exact NE strategy, and all the subgame solving
needs to do is not inadvertently ruin the equilibrium), and found that, in all games tested, the equilibrium
strategy was indeed not ruined (that is, exploitability remained 0). Gurobi was reset before each subgame
solution was computed, to avoid warm-starting the subgame solution at equilibrium.

The experimental results suggest that despite the behavior of 1-KLSS in our counterexample to Proposition 13.3,
in practice 1-KLSS can be applied at every infoset without increasing exploitability despite lacking theoretical
guarantees.

Experiments in dark chess. We used our techniques to create an agent capable of playing dark chess. We
tested on dark chess instead of other imperfect-information chess variants, such as Kriegspiel or recon chess,
because dark chess has recently been implemented by a major chess website, chess.com (under the name Fog
of War Chess), and has thus exploded in recent popularity, producing strong human expert players. Our
agent runs on a single machine with 6 CPU cores.

We tested our agent by playing three different opponents:
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exploitability
game blueprint after 1-KLSS ratio

2x2 Abrupt Dark Hex 0.07 0.06 1.09
4-card Goofspiel, random order 0.17 0.08 2.2
4-card Goofspiel, increasing order 0.17 0.0 ∞
Kuhn poker 0.01 1.5 8.3
Kuhn poker (ϵ-bet) 3.5 0.0 ∞
3-rank limit Leduc poker 0.02 0.02 1.09
3-rank limit Leduc poker (ϵ-fold) 6.5 5.7 1.09
3-rank limit Leduc poker (ϵ-bet) 9.7 9.6 1.01
Liar’s Dice, 5-sided die 0.18 0.13 1.45
100-Matching pennies 1.3 9.8 0.13

Table 36: Experimental results in medium-sized games. Reward ranges in all games were
normalized to lie in [−1, 1]. Ratio is the blueprint exploitability divided by the post-subgame-
solving exploitability. The value ϵ was set to 0.25 in all experiments, but the results are
qualitatively similar with smaller values of ϵ such as 0.1. In the ϵ-bet/fold variants, the
blueprint is the least-exploitable strategy that always plays that action with probability at least
ϵ (Kuhn poker with 0.25-fold has an exact Nash equilibrium for P1, so we do not include it).
Descriptions and statistics about the games can be found in the appendix.

1. A 100-game match against a baseline agent, which is, in short, the same algorithm as our agent,
except that it only performs imperfect-information search to depth 1, and after that uses Stockfish’s
perfect-information evaluation with iterative deepening. The baseline agent is described in more detail
the appendix. Our agent defeated it by a score of 59.5–40.5, which is statistically significant at the 95%
level.

2. One of the authors of this paper is rated approximately 1700 on chess.com in Fog of War, and has
played upwards of 20 games against the agent, winning only two and losing the remainder.

3. Ten games against FIDE Master Luis Chan (“luizzy”), who is currently the world’s strongest player on
the Fog of War blitz rating list65 on chess.com, with a rating of 2416. Our agent lost the match 9–1.
Despite the loss, our agent demonstrated strong play in the opening and midgame phases of the game,
often gaining a large advantage before throwing it away in the endgame by playing too pessimistically.

The performances against the two humans put the rating of our agent at approximately 2000, which is a
strong level of play. The agent also exhibited nontrivial plays such as bluffing by attacking with unprotected
pieces, and making moves that exploit the opponent’s lack of knowledge—something that agents like the
baseline agent could never do. We have compiled and uploaded some representative samples of gameplay of
our dark chess agent, with comments, at this link.

13.8 Conclusions and Future Research
We developed a novel approach to subgame solving, k-KLSS, in imperfect-information games that avoids
dealing with the common-knowledge closure. Our methods vastly increase the applicability of subgame
solving techniques; they can now be used in settings where the common-knowledge closure is too large to
enumerate or approximate. We proved that as is, this does not guarantee safety of the strategy, but we
developed three avenues by which safety guarantees can be achieved. First, safety is guaranteed if the results
of subgame solves are incorporated back into the blueprint strategy. Second, the usual guarantee of safety
against any strategy can be achieved by limiting the infosets at which subgame solving is performed. Third,
we proved that 1-KLSS, when applied at every infoset reached during play, achieves a weaker notion of
equilibrium, which we coin affine equilibrium and which may be of independent interest. We showed that
affine equilibria cannot be exploited by any Nash strategy of the opponent, so an opponent who wishes to

65That rating list is by far the most active, so it is reasonable to assume those ratings are most representative.
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exploit an affine equilibrium must open herself to counter-exploitation. Even without the safety-guaranteeing
additions, experiments on medium-sized games showed that 1-KLSS always reduced exploitability in practical
games even when applied at every infoset, and depth-limited 1-KLSS led to, to our knowledge, the first strong
AI for dark chess.

This opens many future research directions:

1. Analyze k-KLSS for 1 < k <∞ in theory and practice.

2. Incorporate function approximation via neural networks to generate blueprints, particles, or both.

3. Improve techniques for large games such as dark chess, especially managing possibly-game-critical
uncertainty about the opponent’s position and achieving deeper, more accurate search.
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Future Research and Timeline
2024 2025

05 06 07 08 09 10 11 12 01 02 03 04 05 06 07
Thesis proposal

Project A
Project B
Project C
Teaching

Job search
Thesis writing
Thesis defense

Table 37: Proposed timeline of work to be done between now and thesis defense. “Teaching”
refers to the course 15-888 (Computational Game Solving), which I will co-teach with
Tuomas Sandholm in the fall semester. “Job search” includes preparation, submission, and
presentation of both applications (fall) and interviews (spring). Project D is a stretch goal,
and I will spend time on it only if I have extra time to spare.

I hope to work on the following future directions and submit any attained results for publication by May
2025, and finish and defend my thesis in Summer 2025. The order of the items in this section is the rough
order in which I plan to work on these topics, and Table 37 contains a rough proposed timeline.

A Toward a Superhuman Dark Chess Agent
Joint work with Tuomas Sandholm.

We am currently investigating ways to further improve KLSS (described in Part IV) with the goal of achieving
superhuman performance in dark chess. Since the publication of our paper (Zhang and Sandholm, 2021b),
we have significantly improved the agent to the point that it currently achieves about an 86% score against
the agent from our published paper. We plan to improve the performance as much as possible, and then
test the agent via matches on the servers of chess.com, the same way that we tested the agent for our earlier
paper. Here we detail some of the improvements that we have made.

A.1 Learning-Based Game Solvers
Instead of using linear programming to solve the subgames as in Part IV, we switch to using CFR. Namely,
we use a multithreaded implementation of growing-tree CFR (GT-CFR) (Schmid et al., 2023) with some,
which we will now describe for completeness. GT-CFR has two components, running in parallel.

1. A node expander. The node expander repeatedly selects at random a leaf node using Algo-
rithm SelectNode, and expands it.

2. A game solver, running PCFR+. It performs alternating iterates of PCFR+, on each iteration traversing
only those nodes which have been expanded by the node expander.

We now elaborate in greater detail on each of these two components.
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Algorithm SelectNode

1: explorer ← randomly-chosen player
2: h← root of current subgame
3: while h is not a leaf do
4: ▷ avoid excess node expansions if current strategy is low-support
5: if h’s infoset has not yet been touched by the game solver then return null
6: xh ∈ ∆(A(h))← current game solver strategy at h
7: ▷ 1{xh > 0} is taken element-wise

8: if explorer plays at h then a← sample action a w.p. (1− ϵ)1{xh(a) > 0}
| suppxh|

+ ϵ
1

A(h)
9: else a← sample from xh

10: if h is a chance node node then
11: ▷ h is the root of a subgame, i.e., a node at which chance samples ▲’s information
12: ▷ from the blueprint, given ▼’s information. We should focus our attention on nodes in ▲’s
13: ▷ current infoset, so spend at least half our node expansion budget expanding such nodes
14: with probability 0.5 do a← the action leading to ▲’s current infoset
15: return h

A.1.1 The Node Expander
The node expander selects and expands new nodes of the game tree. The node selection algorithm is given
in Algorithm SelectNode. Compared to Schmid et al. (2023), our algorithm uses a different method of
traversing the tree. In particular, their method uses MCTS for node selection, whereas we use a one-sided,
ϵ-greedy approach, where:

• one player, the explorer, selects uniformly at random among the “best” actions, i.e., the actions in the
support of its current strategy, with some ϵ noise for exploration, and

• the other player samples from its current strategy.

The “one-sided” nature of this exploration procedure ensures that nodes that are in neither players’ support
are not needlessly explored. We also experimented with MCTS, which we found in practice to be inferior66.

The selected node h (if not null) is then expanded. That is, h is added to the infoset I(h) that contains it
(creating this infoset in memory if needed), and all children of h are evaluated with Stockfish’s evaluation
function and then added to the game tree with those values.

Several threads running the node expander algorithm are run in parallel. In particular, our current imple-
mentation uses 3 parallel node expander threads67.

Our implementation is completely lock-free except that locks are required at each node to ensure that two
different threads do not attempt to simultaneously expand the same node or create the same information set.
Such locks are only required for the node expander, and therefore in particular the game solver is completely
lock-free.

66This phenomenon may be of independent interest: if ϵ-greedy outperforms MCTS in our setting, perhaps it may also be
superior in more “traditional” settings, such as in two-player zero-sum games a la AlphaZero (Silver et al., 2016).

67Increasing the number of node expander threads does not appear to improve performance. We believe that this is because of
some combination of lock contention and game solving being unable to keep up with the game tree growth.
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Figure 38: Position after 1. c4 d5. White can win almost a full pawn (in expectation)
by mixing between the moves 2. Qa4 with low probability and 2. Nc3 with high probability.
No move for Black simultaneously defends the threats against both the king and the pawn.
(2... c6 may look like it does, but after 3. cxd5, Black cannot recapture the pawn without
risking hanging a king or queen).
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A.1.2 The Game Solver
The game solver performs alternating-iterate PCFR+ on the current game tree and eventually outputs the
last iterate. We avoid computing or storing the average iterate, and instead we simply compute and play
according to the last iterate PCFR+. We do this for several reasons.

• Since the game tree is growing with time, it is not clear how to define the “average iterate” of PCFR+,
since different infosets will have been in the tree for different amounts of time.

• PCFR+ with alternating updates appears to exhibit last-iterate convergence in practice68. Thus, it is
unnecessary to use the average iterate to achieve convergence.

• The entropy inherent to the algorithm (for example, in the choice of what node to expand), in addition
to the stochasticity of the termination time (since the termination condition is a time limit, rather than
a fixed number of iterates) means that the last iterate is essentially already random, thus removing the
need for additional randomness.

Alternate values for use in subgame solving are computed as expected values of the final joint strategy, as in
Schmid et al. (2023).

A.2 Other Improvements
Here we discuss simple but significant details in our implementation.

Purification. After solving the subgame, we purify the strategy (Ganzfried et al., 2012). In particular, when
we do not know the current state (i.e., there is more than one current subgame root), we deterministically
play the highest-probability action. Otherwise, we mix among the top three actions. This had the effect of
reducing low-probability blunders that the agent plays too often due to the various approximations made
throughout the agent, improving overall performance.

68Although this is not known in theory, in practice the last-iterate convergence is in fact fairly fast!
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Purification will, of course, increase exploitability in general. In Figure 38, we give a very common opening
example. This is the reason that we do not apply purification in all situations.

Resolve root weighting. When using (reach-)resolving69 for the subgame solve in KLSS in games with
no nature actions, the standard algorithm (introduced in Part IV) will choose an opponent information set
J uniformly at random from the set of possible infosets. In reality, the correctness of resolving does not
depend on the distribution chosen, so long as it is fully mixed. To be more optimistic, we therefore use a
different distribution. We choose an infoset J via an even mixture of a uniformly random distribution and
the distribution of infosets generated from the opponent strategy in the previous iteration of subgame solving.
That is, the chance probability of selecting information set J is

1
2

(
x(J |I)∑
J′ x(J ′|I) + 1

m

)
,

where x(J |I) is the probability, according to the blueprint strategy profile, of reaching information set J
given our current information I, m is the number of ▼-infosets in the current subgame, the sum is taken over
those same infosets. In this manner, more weight during resolving is given to those positions that were found
to be likely in the previous iteration.

Default strategies in regret matching. RM+ (and its variants) does not specify what strategy should be
used in the event that all regrets are zero, for example, on the first iteration. The default in practice among
previous authors has been to use the uniform random strategy (xt = (1/n, . . . , 1/n)). However, we find in
practice that it is better to use a default strategy that corresponds to a guess as to what a good action may
be. In particular, an infoset I is created the first time a node h ∈ I is expanded. At that point, Stockfish’s
evaluation function defines a best action a at h (for the player acting at h). The default strategy at I is set
to the pure strategy that always plays a.

B Swap Regret and Complexity of NFCE
Joint work with Ioannis Anagnostides, Noah Golowich, Gabriele Farina, and Tuomas Sandholm.

In Part III we discussed no-regret algorithms for various notions of regret. The most robust notion of
regret possible is swap regret, which corresponds to all functions. Very recent breakthrough work (Peng and
Rubinstein, 2024; Dagan et al., 2024) showed that low swap regret is achievable with an improved runtime
bound (in time N Õ(1/ϵ), where N is the size of the game), but still much more slowly than linear-swap regret.

The goal of this project will be to show lower bounds on minimizing swap regret or indeed on the complexity
of computing the corresponding notion of equilibrium, which is the normal-form correlated equilibrium. We
already have made some progress toward this: we have achieved a nearly-matching lower bound of 2Ω(ϵ−1/5)

on swap regret for extensive-form strategy sets, matching the normal-form lower bound shown by Dagan
et al. (2024) and thus demonstrating that no poly(N, 1/ϵ)-round swap-regret minimization algorithm can
exist for extensive-form games.

69For (reach-)maxmargin solving, there is no prior distribution because the adversary picks the distribution.
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B.1 Notation
This subsection uses the notation from Section 11. In addition, for a function ϕ : X → coX , we define

V (ϕ) := 1
T

T∑
t=1

πt(x)
〈
ut, ϕ(x)

〉
.

Thus in particular the total utility experienced by the learner is V (Id). After T rounds, the swap regret is
maxϕ V (ϕ)− V (Id), where the maximum is taken over all functions ϕ : X → coX .

B.2 Impossibility of Swap Regret Minimization
Dagan et al. (2024) showed a lower bound in normal-form games with the following properties:

Theorem B.1 (Dagan et al. 2024). For any finite action set A = [N ], there exists an normal-form
adversary running for T ≳ N rounds, with the following properties:

1. The adversary is oblivious. In particular, the adversary selects a sequence (u1, . . . , uT ) ∼ D
where D ∈ ∆(AT ). The utility of the learner at round t is then simply 1{at = ut}.

2. There exists a strategy a∗ ∈ A that is never used by the adversary.

3. There exists a partition A = A1 ⊔ · · · ⊔ AD where D ≲ log T with the following property. Within
each set Ai, number the actions Ai = {ai1, . . . , aiNi

}. For any sequence (u1, . . . , uT ) ∈ suppD,
the adversary plays actions in Ai only in increasing order. That is, if ut = aij and ut′ = aij′

and t ≤ t′, then j ≤ j′.

4. The swap regret of any learner against this adversary is Ω(D−5).

We have generalized this result to extensive-form games. In particular, we have the following result.

Theorem B.2. There exist arbitrarily large extensive-form strategy sets of dimension m such that there
exists an oblivious adversary which limits any learner to swap regret Ω(log−5 T ) after T = eΘ̃(m1/12)

iterations. Thus, there is no online learning algorithm for extensive-form games whose swap regret has
the form poly(m)/T Θ(1).

We now prove Theorem B.2.

Consider the following family of extensive-form strategy sets, parameterized by natural numbers D and n. First
the learner picks an index i ∈ [D]. Then the environment picks j ∈ [n], and finally the learner picks a binary
action. A strategy is identified (up to linear transformations) by a x ∈ RD×n where x[i, ·] ∈ {− 1√

n
, 1√

n
}n

and x[i′, ·] = 0 if i′ ̸= i (i.e., x as a matrix has exactly one nonzero row). For convenienence we will use
Xi ⊂ X to denote the set of pure strategies where the learner plays i at the root. Let C be the absolute
constant required to make the bounds in Theorem B.1 true.

The adversary works as follows. First, for each i ∈ [D], it populates Ai with uniformly randomly chosen
strategies ai1, . . . ,aiNi

∈ Xi. Then the adversary plays as in Theorem B.1.

We will claim that, for any learner against this adversary, there exists a learner against the adversary of
Theorem B.1 that achieves a similar swap regret—and thus the swap regret of the former learner must be
large. First, we will construct the latter adversary.

Let π1, . . . , πT ∈ ∆(X ) be the sequence of distributions played by the learner. Note that πt can depend on
the utilities u1:t−1 ∈ A that are played by the adversary. Consider the sequence π̄1, . . . , π̄T ∈ ∆(A), where
π̄t is the distribution that samples x ∼ πt and plays according to px ∈ ∆(A), defined as follows. Let x ∈ Xi

be any strategy. Let ϵ be a parameter to be selected later. There are two cases.
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1. ⟨x,aij⟩ ≤ ϵ for every aij ∈ Ai. Then define px = a∗ deterministically.

2. ⟨x,aij⟩ > ϵ for some aij ∈ Ai. Let j be the largest such index, let β = ⟨x,aij⟩, and define px as the
distribution that is a∗ with probability 1− β and aij with probability β.

A critical property for us will be that the learner cannot “guess in advance” what future unobserved aijs
will be, since these are sampled uniformly at random. That is, in Case 2, x can only be played with large
probability once the adversary has played aij .

To be more formal, we first define some notation. For every aij ∈ Ai let tij be the first iteration on which
the adversary plays aij (or tij = T if this never happens). For x ∈ Xi, if x is in Case 1 above then define
tx = 0, and otherwise define tx = tij , where j is as in Case 2.

There are two properties that we will critically need to use about tx. The first states that the learner cannot
place large mass on x until after tx, because doing so would require the learner to guess a vector heavily
correlated with aij before the learner observes aij .

Lemma B.3. Let δ := 1
T

∑
x∈X

tx∑
t=1

πt(x). Then E δ ≤ Ne−nϵ2/2.

Proof. Since the learner has not yet observed aij at time tij , its prior strategy sequence π1:tij (x) must be
independent of aij . Moreover, if t ≤ tx then there must exist some j with tij ≥ t and ⟨x,aij⟩ ≥ ϵ—namely,
the j defining Case 2. Thus we have:

E δ = E
1
T

∑
x∈X

tx∑
t=1

πt(x)

≤ E
1
T

D∑
i=1

∑
x∈Xi

T∑
t=1

πt(x)
∑

j:tij≥t

1{⟨x,aij⟩ ≥ ϵ}

= 1
T

D∑
i=1

∑
x∈Xi

Ni∑
j=1

E

∑
t≤tij

πt(x)


︸ ︷︷ ︸

≤N

E [1{⟨x,aij⟩ ≥ ϵ}]︸ ︷︷ ︸
≤e−nϵ2/2

≤ Ne−nϵ2/2.

where in the last line we use the fact that aij is independent of π1:tij (x) and then Hoeffding’s inequality.

The second property is that, for t > tx, utilities of x under ut are approximately the same as those of of px
under the losses in Theorem B.1.

Lemma B.4. For t > tx, we have
〈
x,ut

〉
≤ px(ut) + ϵ.

Proof. Let x ∈ Xi. There are two cases. First, if ⟨x,aij⟩ ≤ ϵ for every aij ∈ Ai. Then for every t, we have
ut /∈ supp px = {a∗} (because the adversary never plays a∗), and ⟨x,ut⟩ ≤ ϵ by definition, so we are done.

Otherwise, let j be the largest index for which ⟨x,aij⟩ > ϵ. Then tx = tij by definition, and since t > tij ,
by Property 4 the adversary is no longer allowed to play aij′ for j′ < j. Thus, either ut /∈ supp px and
⟨x,ut⟩ ≤ ϵ, or ut = aij . The former case reduces to the previous paragraph. In the latter case, we have
⟨x,ut⟩ = β = px(ut) by construction of f .

For the rest of this proof we will use V̄ (ϕ) to denote the utilities experienced by π̄t under the utilities in
Theorem B.1. That is,

V̄ (ϕ) = 1
T

T∑
t=1

∑
a∈A

π̄t(a)1
{

ϕ(a) = ut
}

= 1
T

T∑
t=1

∑
x∈X

πt(x) Pr
a∼px

[ϕ(a) = ut]
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By Theorem B.1, there exists a function ϕ̄ : A → A such that70 E[V̄ (ϕ̄) − V̄ (Id)] ≥ 1/CD5. It suffices to
show that E[V (ϕ)− V (Id)] is large. To do this, we will show that, up to small errors, V (Id) ≤ V̄ (Id) and
V (ϕ) ≈ V̄ (ϕ̄).

For the first approximation, we have

V (Id) = 1
T

∑
x∈X

T∑
t=1

πt(x)
〈
x,ut

〉
≤ 1

T

∑
x∈X

∑
t>tx

πt(x)
〈
x,ut

〉
+ δ

≤ 1
T

∑
x∈X

∑
t>tx

πt(x)px(ut) + ϵ + δ

≤ 1
T

∑
x∈X

T∑
t=1

πt(x)px(ut) + ϵ + 2δ = V̄ (Id) + ϵ + 2δ.

For the second, we have

V (ϕ) = 1
T

∑
x∈X

T∑
t=1

πt(x)
〈
ϕ(x),ut

〉
≥ 1

T

∑
x∈X

∑
t>tx

πt(x) E
a∼px

〈
ϕ̄(a),ut

〉
− δ

≥ 1
T

∑
x∈X

∑
t>tx

πt(x) E
a∼px

〈
ϕ̄(a),ut

〉
− ϵ− δ

≥
∑
x∈X

1
T

T∑
t=1

πt(x) E
a∼px

〈
ϕ̄(a),ut

〉
− ϵ− 2δ = V̄ (ϕ̄)− ϵ− 2δ.

Thus,
E[V (ϕ)− V (Id)] ≥ E

[
V̄ (ϕ̄)− V̄ (Id)− 2ϵ− 4δ

]
≥ 1

CD5 − 2ϵ− 4δ ≥ 1
3CD5

by taking

ϵ = 1
3CD5 and n = 2 log 12NCD5

ϵ2 = Õ(D11).

and the proof is complete.

B.3 Polynomial-time expected fixed points
Definition B.5 (Expected fixed point problem). Let X ⊂ Rn. The OracleEFP problem is the following.
Given oracle access to a function ϕ : X → coX , computes a distribution π ∈ ∆(X ) such that

E
x∼π

[ϕ(x)] = E
x∼π

[x].

70Technically ϕ is a random variable dependent on u1, . . . ,uT .
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B.3.1 Ellipsoid against hope
In this section we give an overview of the ellipsoid against hope (EAH) algorithm (Papadimitriou and
Roughgarden, 2005; Jiang and Leyton-Brown, 2011) using the cleaner exposition of Farina and Pipis (2024).
Let Z ⊂ Rm,Y ⊂ Rn be convex, compact sets. At its core, EAH finds feasible points z in constrained
optimization problems of the form

find z ∈ Z s.t. min
y∈Y

y⊤Az ≥ 0, (17)

in polynomial time, given two oracles:

1. a “good-enough-response” (GER) oracle71 that, given y ∈ Y , outputs a pair (z, Az) ∈ Z × Rd such that
y⊤Az ≥ 0; and

2. a separation oracle SEPY over Y.

Theorem B.6 (Ellipsoid against hope, (Papadimitriou and Roughgarden, 2005; Jiang and Ley-
ton-Brown, 2011; Farina and Pipis, 2024)). Given a GER oracle and a separation oracle on compact,
convex polytope Y, there exists a poly(n, L)-time algorithm, where L is the bit complexity of the input,72

that returns an exact solution z∗ to (17) that is a mixture of at most n GER oracle responses.

B.3.2 Polynomial-time expected fixed points using ellipsoid against hope

Theorem B.7. Given a linear optimization oracle on X , there exists a poly(n, L)-time algorithm
for the OracleEFP problem, where L is the bit complexity of the input.73 The algorithm returns an
expected fixed point distribution π supported on at most n points x ∈ X .

Proof. The OracleEFP algorithm is equivalent to the following feasibility problem:

find π ∈ ∆(X ) s.t. min
y∈[−1,1]d

y⊤Aπ ≥ 0

where A is the matrix indexed by vectors x ∈ X whose xth column is ϕ(x) − x. We apply the EAH
algorithm (Theorem B.6). To do this, we need two oracles. The separation oracle on [−1, 1]d is trivial.
The GER oracle must, given a vector y ∈ [−1, 1]d, compute a pair (π, Aπ) such that y⊤Aπ ≥ 0. Consider
π = ex, where x = argminx y⊤x. Such x can be computed using the linear optimization oracle. Then
y⊤Aπ = y⊤(ϕ(x)− x) ≥ 0 since ϕ(x) ∈ coX . Thus, (ex, ϕ(x)− x) is a valid GER output.

B.4 Further Research
There are a number of future steps that we intend to take in this project.

1. The most obvious open problem is to show lower bounds on the complexity of computing NFCE in
extensive-form games. In particular, our goal is to show the following conjecture.

Conjecture B.8. It is hard (for some natural complexity class, perhaps PPAD) to compute one
ϵ-NFCE, given a game Γ and parameter ϵ > 0.

2. Theorem B.7 should imply efficient algorithms for Φ-equilibria as long as (some superset of) the polytope
of deviations Φ itself admits an efficient separation oracle. For example, in Section 11 we discussed

71Note that the existence of a GER oracle implies, by duality, that (17) is feasible.
72Formally, L bounds 1) the facet complexity of Y, and 2) the encoding lengths of all outputs of the two oracles.
73Formally, L bounds the encoding lengths of all outputs of both oracles.

149



the class of low-degree deviations, which can be represented by a reasonable number of constraints;
Theorem B.7 should thus imply an efficient algorithm for low-degree correlated equilibria.

The algorithm that achieves this is a “doubly-nested EAH”, where the outer EAH is used to compute
the correlated equilibrium itself, and the inner EAH is used as a subroutine to compute expected fixed
points. It remains to formalize this argument, especially being wary of any possible issues of numerical
precision.

C Sequential Communication Equilibria
Joint work with Tuomas Sandholm.

One major flaw in computing optimal communication equilibria (as per Part II) is that the resulting equilibria
can often contain irrational off-path behavior. In particular, players’ constraints on following recommended
actions are only enforced on-path: once the player reaches an infoset that cannot be reached in equilibrium,
the player will follow any recommended action at that infoset, no matter how irrational (even if, for example,
it is dominated)

The goal of this project is to develop results analogous to those in Part II for tighter notions of equilibrium.
In particular, we focus on the sequential communication equilibrium defined by Myerson (1986).

C.1 Setup
As in Part II, we consider finite extensive-form games Γ with a mediator that is able to communicate with
players. Departing from Part II, however, it will be important to us that simultaneous actions be explicitly
allowed as part of the model. Thus, we will adopt the notation used in Section 4.2: at every history h ∈ Γ
there is an action set Ai(h) for each player i (including chance), and the joint actions a ∈×i∈[n]∪C Ai(h) are
identified with the children of h. So, every player takes an action at every node. The child of h identified
with action tuple a is denoted ha. The set of leaves (terminal nodes) of Γ is denoted Z.

Nonterminal nodes are partitioned into information sets (infosets): for each player, Ii is a partition of
H \ Z. The legal action set must be the same if the infosets are the same, i.e., Ai(h) = Ai(h′) := Ai(I) if
h, h′ ∈ I ∈ Ii. The collection of infosets for a player i is Ii. For cleanliness of notation we will assume that
distinct infosets have disjoint action sets, i.e., Ai(I) ̸= Aj(J) if i ̸= j or I ̸= J .

We will refer to the levels of the game tree as timesteps, t = 1, . . . , T where T is the depth of the tree and
level t = 1 contains only the root. We will also assume that all leaves are at time T , for simplicity. Assume Γ
is timeable, i.e., infosets do not cross different timesteps of the game tree. We use Ht to denote the history
set at time t. For notational convenience, let At :=

⋃
h∈Ht,i∈[n] Ai(h) be the set of all actions available at

timestep t, and A :=
⋃

t∈[T ] At be the set of all actions. We will also use comparators in superscripts, for
example, A>t =

⋃
t′>t Aτ .

The conditional utility ui(x|h) is the expected utility at the terminal node reached by starting at node h and
following profile x.

We will denote the game tree of the mediator-augmented game by Γ̂. In Γ̂, there is an extra player (the
mediator, female pronouns) who communicates with players. The mediator has no private information of
its own except what players report to her. We will generally use hats to distinguish components of Γ̂ from
components of Γ—e.g., Îi ∈ Îi is a generic information set, x̂i ∈ X̂i is a generic strategy, and so on. Then, at
every time t = 1, 2, . . . , the following events happen in sequence:

1. each player i observes his infoset It
i ∋ ht, and sends a private message (type report, possibly a lie)

Ît
i ∈ Ii to the mediator,

2. the mediator sends a private message (action recommendation) ât
i ∈ Ai(Ît

i ) to each player i.
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3. each non-mediator player plays an action at
i ∈ Ai(It

i ) (possibly disobeying the action recommendation)
in the game Γ. The state advances to ht+1 := hat.

The history ht eventually reaches a terminal node of Γ, at which point the mediator-augmented game ends
and each player gets utility ui(z). The mediator has no utility.

The augmented game Γ̂ has three times as many timesteps as Γ. However, in the interest of clean notation,
we will only number the timesteps at which the mediator sends recommendations. In particular, Ĥt is the set
of histories in Γ̂ at which the mediator is about to give a recommendation to players at time t in Γ.

Type reports, of course, could be lies, and players are free to disobey action recommendations.

At a history ĥ ∈ Ĥ, a player i has been direct if the player has so far always sent honest type reports and
obeyed all action recommendations. We will overload notation as follows: for each node h ∈ H, we use
h ∈ Ĥ to denote the history in which all players have been direct until h, and we are in Step 2 above, i.e.,
it is the mediator’s turn to supply action recommendations). A generic strategy for the mediator will be
denoted µ̂ ∈ Ξ. For ĥ ∈ Ĥ at which the mediator gives recommendations, we will write µ̂(h)i to denote the
recommendation given by the mediator to player i.

We will use ôi ∈ X̂i for i ̸= 0 to denote the direct strategy of player i—the direct strategy is the one that
always sends honest information reports and obeys honest recommendations.

Let B ⊆ A be a set of actions. Let Bt = B∩At. Let X̂B
i ⊆ X̂i be the set of player i strategies in the augmented

game (i.e., manipulation plans) in which player i is direct unless and until he receives a recommendation
from set B.

Definition C.1. The set of actions B is codominated at time t if, for every distribution π ∈ ∆(Ht × Ξ), if:

1. with positive probability, the mediator recommends an action in B to some player at time t, i.e.,

π
({

(h, µ̂) ∈ Ht × Ξ : ∃i s.t. µ̂(h)i ∈ B
})

> 0, and

2. the mediator never recommends an action in B after at time t, i.e.,

π
({

(h, µ̂) ∈ Ht × Ξ : ∃(i, ĥ) ∈ [n]×H>t s.t. µ̂(ĥ)i ∈ B
})

= 0,

then some player i has a conditionally-profitable deviation that only deviates when recommended an action
in B at time t, that is, there is a player i and a strategy x̂i ∈ X̂Bt

i such that

E
(h,µ̂)∼π

[ûi(µ̂, x̂i, ô−i|h)− ûi(µ̂, ôi, ô−i|h)] > 0.

Set B is codominated if it is codominated at every time t.

Myerson (1986) showed that the union of codominated sets is codominated, so there is an (inclusion-wise)
largest codominated set D. Call an action codominated if it is in D.

The main result of Myerson (1986) states:

Theorem C.2 (Theorems 2 and 3 of Myerson (1986)). 74 Let ΓD be Γ except with all codominated
actions removed in the game. The communication equilibria of ΓD are precisely the sequential
communication equilibria of Γ.

We will use Theorem C.2 as a definition of sequential communication equilibria.
74See also the penultimate paragraph of p. 349 of Myerson (1986) for an explicit statement of this form of the result
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Algorithm 14: Computing the set of codominated actions
1: B1, B2, . . . , BT ← ∅
2: for each time t = T, . . . , 1 do
3: for each action a ∈ At do
4: solve program (18) with B := B>t ∪ {a}
5: if optimal value = 0 then B ← B ∪ {a}
6: return B :=

⋃
t∈[T ] Bt

C.2 Efficient Algorithm for SCE
The main result of this section is the following.

Theorem C.3 (Main theorem). There is a polynomial-time algorithm for computing the set D of all
codominated actions.

Proof Sketch. We start by showing that whether a set of actions is codominated at time t can be decided in
polynomial time.75 Let B be such a set and let a ∈ Bt. Let i be the player who would play a, that is, i is
the player for whom a ∈ Ai(h) for some h. Consider the augmented game Ga,B, defined as follows. At the
first timestep, the mediator selects a history ht ∈ Ht. Only player i is allowed to deviate, and only when
recommended action a.76 After timestep t, all actions from set B are removed from G.

By definition, B is codominated at t if Gt contains no communication equilibrium in which the mediator
recommends a, without also recommending an action in B>t. Thus, if Ξt

a,B is the polytope of communication
equilibria of Ga,B , B is codominated at t if and only if

max
µ∈Ξt

a,B

∑
h∈Ht,i∈[n],
a∈A(h):ai=a

µ̂[ha] = 0. (18)

Zhang and Sandholm (2022a) showed that Ξt
∗ is a polytope that can be efficiently expressed with a polynomial

number of variables and constraints. Therefore, the value of the above program is computable in polynomial
time.

Now, notice that set B is codominated if and only if, for all times t and all actions a ∈ Bt, the set {a} ∪B>t

is codominated at time t. This claim follows directly from Definition C.1, by observing that the definition
of “codominated at time t” does not include any interactions between different actions at time t: set B is
codominated if, whenever any action in Bt is recommended, some action must be recommended after time
t to counter it. Thus, Algorithm 14 correctly returns the set of all codominated actions, and the proof is
complete.

Corollary C.4. There is a polynomial-time algorithm for computing an optimal sequential communi-
cation equilibrium with respect to any linear objective uM : Z → R.

75This step echoes the proof of Theorem 4 of Myerson (1986), which essentially characterizes the dual of (18).
76This restriction can be achieved by limiting the strategy sets of the players in G[a].
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C.3 Remaining Questions and Tasks
1. Flesh out the above proof sketch.

2. Experiments, maybe? (Not sure if meaningful—the algorithm will be very slow...)

3. (Perhaps most interesting) What happens for other solution concepts? Myerson’s equivalence proof
does not obviously extend to e.g. EFCE, certification eq., etc. Is there a similar characterization?

D Applications of Generalized Mechanism Design
Joint work with Tuomas Sandholm.

This project is more speculative. I will work on it only if time permits and if we find a sufficiently interesting
application, and it may not appear in the final thesis.

We believe that the framework introduced in Part II can be scaled further than exhibited so far, and we
intend to demonstrate this scalability by applying it to large problems of economic interest. Below we will
propose one possible avenue of research. Deng et al. (2021) study the problem of dynamic mechanism design
with budget constraints. We first give an overview of their work.

D.1 Setup
There is a principal (mechanism designer) and an agent.77. At each timestep t = 1, . . . , T , the following
events happen, in order.

1. The agent observers its type θt ∼ Ft where Ft ∈ Ft ⊆ ∆(Θt) is the type distribution of the buyer.

2. The agent reports a type θ̂t ∈ Θt (possibly a lie).

3. The principal observes θ̂t and selects an outcome zt ∈ Zt. The agent observes the outcome. The
principal and agent get rewards uP

t (zt) and uA
t (θt, zt) respectively.

The above process defines a two-player sequential game. The type distributions Ft are common knowledge
and independent of the reported types or seller allocation/payment selections. A seller history ht in this
game is given by the observations and actions taken by the seller up to and including the disclosed type78

at time t. That is, ht = (θ̂1, z1, . . . , θ̂t, zt). Mechanisms79 are principal strategies in this game. That is, a
(deterministic) mechanism is given by a tuple of functions (zt : Ht → Zt)T

t=1.
77Deng et al. (2021) also generalize their results to the multi-agent case, but for simplicity and also to follow their exposition

more closely, we will focus here on the single-agent case.
78This differs slightly from the notation adopted by Deng et al. (2021), but it is equivalent and slightly cleaner.
79Technically these are what Deng et al. (2021) call clairvoyant mechanisms, as (implicitly, since we stipulated the common

knowledge of distributions Ft) these mechanisms can depend on the whole sequence of priors F1, . . . , FT . Deng et al. (2021) also
study non-clairvoyant mechanisms, which are mechanisms that canot depend on future type distributions—but we will not
discuss these in our formulation for simplicity.
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Incentive compatibility. We assume the revelation principle and define a mechanism to be dynamic
incentive-compatible (DIC) if the agent is incentivized to report honestly (θ̂t = θt) in every history80

(θ1, θ̂1, o1, . . . , θt−1, θ̂t−1, ot−1, θt).

Constraints. The formulation allows history-dependent constraints on the mechanism. Formally, let
Zt : Ht → 2Zt define the constraint at time t. The mechanism must satisfy zt(ht) ∈ Zt(ht) for all histories
ht in order to be valid. The constraints are assumed to be consistent, in the sense that for every zt ∈ Zt(ht)
and θ̂t+1 ∈ Θt+1, we must have Zt(ht, zt, θ̂t+1) ̸= ∅. (This condition ensures that the mechanism cannot find
itself in a state where there is no valid outcome to select.)

Objective. Call a mechanism feasible if it satisfies DIC and the history-dependent constraints. The objective
of the mechanism designer is to select an optimal mechanism, that is, a feasible mechanism that maximizes
the expected total reward E

∑T
t=1 uP

t (zt) of the principal.

D.2 Characterization of Optimal Mechanisms
The main result of Deng et al. (2021) concerning (clairvoyant) dynamic mechanism design with such
constraints is a characterization of optimal mechanisms in the above setup as lossless history compression
mechanisms. Informally, the result states that if there is some notion of “state” that is sufficient to define the
history-dependent constraints, then that notion is also sufficient to define an optimal mechanism.

More formally, let st : Ht → St define a state st(ht) corresponding to each history ht. Call st a lossless
history compression (LHC) if

1. constraints depend only on state, i.e., there exists maps Z̃t : St → 2Zt with Zt = Z̃t ◦ st for all t, and

2. there exist update rules Λt : St ×Zt ×Θt+1 → St+1 such that Λ(st(ht), zt, θ̂t+1) = st(ht, zt, θ̂t+1).

Analogously, call a mechanism (zt)T
t=1 an LHC mechanism if there exist functions81 z̃t : St → Zt such that

zt = z̃t ◦ st.

Theorem D.1 (Deng et al., 2021, Theorem 3.5). For every feasbile mechanism, there exists a feasible
LHC mechanism with the same principal objective. In particular, there exists an optimal LHC
mechanism.

D.3 Example: Auctions with Budget Constraints
The main application of interest to Deng et al. (2021) (and to us in this subsection) is the design of
revenue-maximizing sequential auctions with budget constraints. In the above language, we have the following
components.

• The principal and agent are the buyer and seller, respectively.

• Types Θt = [0, 1] are valuations.

• Outcomes are zt = (xt, pt) ∈ R2, where xt ∈ [0, 1] should be interpreted as the amount of item sold to
the buyer, and pt ∈ R is the payment of the buyer. Thus the agent’s utility is uA

t (θt, xt, pt) = θtxt − pt.

• The objective is to maximize revenue. Thus the principal’s utility is uP
t (xt, pt) = pt.

• As usual in mechanism design, we insist on ex-post incentive compatibility at every timestep. That is,
the agent’s total utility must always be nonnegative.

80This differs from the formulation we have been using in Part II: the notion in use here is stronger because the agent must be
incentivized to report honestly even if it has reported dishonestly in the past.

81The z̃ts can be different for each time t even if everything else is the same. That is, a “memoryless” LHC mechanism, in
which |St| = 1, may still behave differently in different timesteps.

154



• The agent has a fixed, common-knowledge budget B.

The last two conditions can be enforced as history-dependent constraints, by setting

Zt(ht) =
{

zt = (xt, pt) :
t∑

τ=1
uA

τ (θ̂τ , zτ ) ≥ 0;
t∑

τ=1
pτ ≤ B

}
.

An LHC st is given by the map st : Ht → [0, 1]3, where the three coordinates of st are:

• the current total utility of the buyer,

• the amount of budget the buyer has remaining, and

• the buyer’s current bid.

Formally, st is defined by

st(θ̂1, z1, . . . , θ̂t−1, zt−1, θ̂t) =
(

t∑
τ=1

uA
τ (θ̂τ , zτ ), B −

t∑
τ=1

pτ , θ̂t

)
.

It is straightforward to formulate the constraints Z̃t and update rules Λt based on this choice of state. Thus,
Theorem D.1 guarantees that there exists an optimal mechanism whose decision rule z̃t depends only on
st(ht).

D.4 Proposed Research
Recall from Section 7 (Zhang et al., 2023a) that mechanism design settings—including this one—can be
formulated as zero-sum games, and indeed we have already used deep RL to compute optimal mechanisms in
a four-step repeated auction with budget constraints—a special case of the setup discussed above. That will
be our starting point. We propose to explore at least one of the following possible directions for this thesis82

More efficient learning via LHC characterization. The LHC characterization introduced in the
section above can be naturally merged with our deep RL framework in Part II to create a more efficient
representation of the optimal policy, because the policy no longer needs to depend on the entire history but
only on the three-dimensional state above. We propose to incorporate this improvement into our deep RL
model, in the hope of improving the training time or even the overall performance.

Private budgets. Deng et al. (2021) explicitly leave the extension to private budgets open. In particular,
we propose to consider the case where the buyer’s budget B is known only to the buyer, and the buyer reports
(possibly falsely) this budget to the seller before the first round. This case still falls naturally into our model
in Part II.

82This work is still in a very early stage. Indeed, as seen in Table 37, I do not plan to do significant work on this project
until after my proposal. Thus these ideas are high-level. I am also open to suggestions from the proposal committee or others
regarding other possible applications. Whatever the setting we ultimately choose, the hope is to, at minimum, experimentally
validate the framework by demonstrating that it is able to compute good mechanisms in settings where hand analysis does not
suffice on its own. The experiments might also yield insights that allow us to develop novel theory for these settings.
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Constraints and communication equilibria. In the framework of Part II, the natural formulation of
individual rationality (IR) is unorthodox, namely by allowing the player the choice to exit the mechanism,
returning all allocated items and also any payment (and hence getting utility 0). This formulation is, as
discussed in Part II, actually stronger than the usual notion of individual rationality, because the mechanism
must now also be robust to a buyer who overbids and then chooses to exit if the mechanism forces it to
pay higher than its true value. A similar logic applies to other more general constraints, such as budget
constraints.

We propose to run an experiment to investigate the effect of choosing between these two formulations of
constraints. For example, does it matter for revenue whether IR is formulated in the “traditional” way
(i.e., by constraining the outcomes) or in the “exit option” way described above? What about the budget
constraint?

Ex-post vs ex-interim IC. When there are multiple buyers, there is a clear distinction between ex-post
and ex-interim incentive compatibility: in the former case, the auction must remain incentive-compatible
even for a bidder who knows in each stage the bids of the other buyers before choosing its own bid. For
single-stage, single-item optimal auction design, this distinction is essentially moot because the auction of
Myerson (1981) is the optimal auction in either case. However, to our knowledge, the distinction between
ex-post and ex-interim IC in the dynamic setting has not been studied.

Our framework in Part II, once again, captures this distinction naturally. We thus propose to study this
distinction using our framework. For example, does enforcing ex-post IC, which is a stronger condition, lead
to less revenue? Why or why not?

Theoretical and practical questions. In any of the above settings, we can ask both theoretical and
practical questions.

• (Practical) What effect does each of the changes have on the optimal revenue? With the experimental
setup that we have, answering this should be straightforward: re-run the experiment from Section 7,
and compare the results.

• (Theoretical) How would one extend the LHC characterization of optimal mechanisms to these cases?
Perhaps the answer to the practical question above would be informed by the results of the practical
investigation above.
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Graham, Jared Kaplan, Sören Mindermann, Ryan Greenblatt, Buck Shlegeris, Nicholas Schiefer, and Ethan

161



Perez. Sleeper agents: Training deceptive llms that persist through safety training. arXiv preprint arXiv:
2401.05566, 2024. 45

Geoffrey Irving, Paul F. Christiano, and Dario Amodei. AI safety via debate. CoRR, abs/1805.00899, 2018.
45

Sergei Izmalkov, Silvio Micali, and Matt Lepinski. Rational secure computation and ideal mechanism design.
Symposium on Foundations of Computer Science (FOCS), Washington, DC, 2005. 49

Eric Jackson. A time and space efficient algorithm for approximately solving large imperfect information
games. AAAI Workshop on Computer Poker and Imperfect Information, 2014. 132

Jiaming Ji, Tianyi Qiu, Boyuan Chen, Borong Zhang, Hantao Lou, Kaile Wang, Yawen Duan, Zhonghao He,
Jiayi Zhou, Zhaowei Zhang, Fanzhi Zeng, Kwan Yee Ng, Juntao Dai, Xuehai Pan, Aidan O’Gara, Yingshan
Lei, Hua Xu, Brian Tse, Jie Fu, Stephen McAleer, Yaodong Yang, Yizhou Wang, Song-Chun Zhu, Yike
Guo, and Wen Gao. AI alignment: A comprehensive survey. CoRR, abs/2310.19852, 2023. 45

Albert Jiang and Kevin Leyton-Brown. Polynomial-time computation of exact correlated equilibrium in
compact games. ACM Conference on Electronic Commerce (EC), 2011. 149

Albert Xin Jiang and Kevin Leyton-Brown. Polynomial-time computation of exact correlated equilibrium in
compact games. Games and Economic Behavior, 91:347–359, 2015. 71

Albert Xin Jiang, Ariel Procaccia, Yundi Qian, Nisarg Shah, and Milind Tambe. Defender (mis)coordination
in security games. International Joint Conference on Artificial Intelligence (IJCAI), 08 2013. 21

Michael Johanson, Kevin Waugh, Michael Bowling, and Martin Zinkevich. Accelerating best response
calculation in large extensive games. International Joint Conference on Artificial Intelligence (IJCAI),
2011. 135

Emir Kamenica and Matthew Gentzkow. Bayesian persuasion. American Economic Review, 101(6):2590–2615,
2011. 9, 63, 69, 120, 129

Mamoru Kaneko and J Jude Kline. Behavior strategies, mixed strategies and perfect recall. International
Journal of Game Theory, 24(2):127–145, 1995. 38

Jonathan Katz. Bridging game theory and cryptography: Recent results and future directions. Theory of
Cryptography: Fifth Theory of Cryptography Conference, TCC 2008, New York, USA, March 19-21, 2008.
Proceedings 5. Springer, 2008. 49

Andrew Kephart and Vincent Conitzer. Complexity of mechanism design with signaling costs. Autonomous
Agents and Multi-Agent Systems, 2015. 63

Andrew Kephart and Vincent Conitzer. The revelation principle for mechanism design with signaling costs.
ACM Transaction on Economics and Computation (TEAC), 9(1):1–35, 2021. 63

Daphne Koller and Nimrod Megiddo. The complexity of two-person zero-sum games in extensive form. Games
and Economic Behavior, 4(4):528–552, October 1992. 20, 36, 71

Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Fast algorithms for finding randomized strategies
in game trees. ACM Symposium on Theory of Computing (STOC), 1994. 48, 55, 67

Yoav Kolumbus and Noam Nisan. Auctions between regret-minimizing agents. Frédérique Laforest, Raphaël
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